图书情报工作 ›› 2019, Vol. 63 ›› Issue (12): 105-113.DOI: 10.13266/j.issn.0252-3116.2019.12.014

• 知识组织 • 上一篇    下一篇

基于CNN-BiLSTM模型的在线医疗实体抽取研究

陈德鑫1,2, 占袁圆1,2, 杨兵1,2, 谢亚霓3   

  1. 1. 湖北大学教育学院 武汉 430062;
    2. 湖北大学智慧学习研究中心 武汉 430062;
    3. 荆门市图书馆 荆门 448000
  • 收稿日期:2018-10-09 修回日期:2019-01-07 出版日期:2019-06-20 发布日期:2019-06-20
  • 作者简介:陈德鑫(ORCID:0000-0003-2627-6585),讲师,博士,E-mail:202chendexin@163.com;占袁圆(ORCID:0000-0001-8981-6564),本科生;杨兵(ORCID:0000-0002-2774-0282),副院长,教授,博士;谢亚霓(ORCID:0000-0001-8537-7402),馆员。
  • 基金资助:
    本文系湖北省自然科学基金项目"基于深度学习的网络用户心理健康状态研究"(项目编号:2018CFB315)研究成果之一。

Research on Extraction of Online Medical Entities Based on Mixed Deep Learning Model

Chen Dexin1,2, Zhan Yuanyuan1,2, Yang Bing1,2, Xie Yani3   

  1. 1. School of Education, Hubei University, Wuhan 430062;
    2. Smart Learning Center, Hubei University, Wuhan 430062;
    3. Jingmen Library, Jingmen 448000
  • Received:2018-10-09 Revised:2019-01-07 Online:2019-06-20 Published:2019-06-20

摘要: [目的/意义]在线医疗信息抽取是实现医疗信息检索、医疗信息推荐、个人医疗健康提醒及警示、疾病诊断、公众健康监控、药物不良反应挖掘等服务的基础环节,而医疗实体抽取则是在线医疗信息抽取的首要工作。本文拟解决传统医疗实体抽取严重依赖于人工特征提取且效率低的问题。[方法/过程]以网络文本为研究对象,首先对医疗实体类型和医疗实体抽取的目标进行描述。将在线医疗文本中的医疗实体抽取任务看作序列标注问题来解决,通过对CNN模型和BiLSTM模型基础理论的探讨,构建基于混合深度学习模型CNN-BiLSTM的医疗实体抽取框架。[结果/结论]通过三组对比实验,验证了本文所使用的CNN-BiLSTM模型在医疗实体抽取任务中的有效性。

关键词: 深度学习, 卷积神经网络, 双向长短记忆模型, 医疗实体

Abstract: [Purpose/significance] Online medical information extraction is the basic link to achieve medical information retrieval, medical information recommendation, personal medical health reminder and warning, disease diagnosis, public health monitoring, drug adverse reaction mining and other services, while medical entity extraction is the primary work of online medical information extraction. This paper aims to solve the problem that traditional medical entity extraction relies heavily on artificial feature extraction and the problem of low efficiency.[Method/process] Taking network text as the research object, this paper firstly describes the type of medical entity and the target of extraction of medical entity. Online entity extraction task in medical text was considered a sequence labeling problem to solve, the paper discussed the basic theories of BiLSTM model and the CNN model, and built a model based on hybrid deep learning CNN-BiLSTM medical entity extraction framework.[Result/conclusion] At last, the effectiveness of the CNN-BiLSTM model in the medical entity extraction task was verified through three comparison experiments.

Key words: deep learning, convolutional neural network, bi-directional long short term memory networks, medical entities

中图分类号: