[1] 程健一. 中文电子病历实体关系抽取研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[2] WEI Q, CHEN T, XU R, et al. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks[J]. Database:the journal of biological databases & curation, 2016(1):1-8.
[3] 杨锦锋,于秋滨,关毅,等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014, 40(8):1537-1562.
[4] 龙光宇, 徐云. CRF与词典相结合的疾病命名实体识别[J]. 微型机与应用, 2017(21):51-53.
[5] LIU H, QIN X, FU B. The symptoms and pathogenesis entity recognition of TCM medical records based on CRF[C]//Proceedings of the 2017 international workshop on big data and information security. New York:IEEE, 2016:1479-1484.
[6] 苏娅, 刘杰, 黄亚楼. 在线医疗文本中的实体识别研究[J]. 北京大学学报(自然科学版), 2016, 52(1):1-9.
[7] CHIU J P C, NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transactions of the Association for Computational Linguistics, 2016, 4(1):357-370.
[8] 杨红梅, 李琳, 杨日东,等. 基于双向LSTM神经网络电子病历命名实体的识别模型[J]. 中国组织工程研究, 2018(20):3237-3242.
[9] 吴嘉伟, 关毅, 吕新波. 基于深度学习的电子病历中实体关系抽取[J]. 智能计算机与应用, 2014, 4(3):35-38.
[10] XU K, ZHOU Z, HAO T, et al. A bidirectional LSTM and conditional random fields approach to medical named entity recognition[C]//Proceedings of the international conference on advanced intelligent systems and informatics 2017. Berlin:Springer, 2018:355-365.
[11] DONG X, CHOWDHURY S, QIAN L, et al. Transfer bi-directional LSTM RNN for named entity recognition in Chinese electronic medical records[C]//Proceedings of the international conference on E-Health networking, applications and services. New York:IEEE, 2017:1-4.
[12] MIOTTO R, WANG F, WANG S, et al. Deep learning for healthcare:review, opportunities and challenges[J]. Briefings in bioinformatics, 2017,19(6):1236-1246.
[13] i2b2. 2010i2b2/VA challenge evaluation concept annotation guidelines[EB/OL].[2018-02-18].https://www.i2b2.org/NLP/Relations/assets/Concept%20Annotation%20Guideline.pdf.
[14] KOUTNIK J, GREFF K, GOMEZ F, et al. A clockwork RNN[J]. Computer science, 2014:1863-1871.
[15] VU N T, ADEL H, GUPTA P, et al. Combining recurrent and convolutional neural networks for relation classification[C]//Proceedings of NAACL-HLT. Stroudsburg:ACL, 2016:534-539.
[16] WEN Y, ZHANG W, LUO R, et al. Learning text representation using recurrent convolutional neural network with highway layers[C]//Proceedings of Neu-IR'6 SIGIR workshop on neural information retrieval. New York:ACM, 2016:1-5.
[17] ADEL H, SCHUTZE H. Exploring different dimensions of attention for uncertainty detection[C]//Proceedings of the 15th conference of the European chapter of the Association for Computational Linguistics. Stroudsburg:ACL, 2017(1):22-34.
[18] YIN W, SCHUTZE H, XIANG B, et al. ABCNN:attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016(4):259-272.
[19] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th international conference on machine learning. Sydney:The Journal of Machine Learning Research, 2017:1-9.
[20] ARKHIPENKO K, KOZLOV I, TROFIMOVICH J, et al. Comparison of neural network architectures for sentiment analysis of Russian Tweets[C]//Proceedings of the international conference "Dialogue 2016". Moscow:Computational Linguistics and Intellectual Technologies, 2016:1-10.
[21] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE international conference on computer vision. New York:IEEE, 2015:1026-1034.
[22] SANTOS C N D, ZADROZNY B. Learning character-level representations for part-of-speech tagging[C]//Proceedings of international conference on machine learning. Beijing:JMLR, 2014:1818-1826.
[23] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Netw, 2005, 18(5):602-610.
[24] RAMSHAW L A, MARCUS M P. Text Chunking using transformation-based learning[J]. Text speech & language technology, 1995, 11(5):82-94.
[25] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of IEEE international conference on acoustics, speech and signal processing. New York:IEEE, 2013:6645-6649. |