UMLS语义命题是用三元组表示的最小语义化知识单位,其主语和宾语都是UMLS超级叙词表中的概念,谓词是UMLS语义网络中的语义关系。UMLS语义命题的抽取过程涉及浅层句法分析、概念映射、谓词识别与语义命题生成等环节。两种以UMLS语义命题为基础的医学信息资源聚合方法——用知识单元作为资源单位的聚合方法和用文档关联数据作为资源单位的聚合方法,其聚合结果分别是知识网络和文档网络。
UMLS semantic propositions are the smallest units of semantic knowledge represented as triples, in which subjects and objects are concepts from the UMLS metathesaurus and predicates are semantic relations from the UMLS semantic network. The extraction process of UMLS semantic propositions involves the shallow parsing, concept mapping, predicate identification and generation of semantic proposition. This paper proposes two polymerization methods of medical information resources based on UMLS semantic propositions, which respectively regard knowledge units and linked document data as resource units. The polymerization results are respectively a knowledge network and a document network.
[1] 尚武, 刘文君, 杨涌. 医学数字图书馆信息资源整合研究[J]. 医学信息学杂志, 2013, 34(1):71-74.
[2] 文丽. 网络医学信息资源整合与利用研究[J]. 情报科学, 2009, 27(5):730-732.
[3] Berlanga R, Jiménez-Ruiz E, Nebot V. Exploring and linking biomedical resources through multidimensional semantic spaces[J]. BMC Bioinformatics, 2012, 13(Suppl):1-17.
[4] Jones J, Phalakornkule K, Fitzpatrick T, et al. Developing protégé to structure medical report[EB/OL].[2013-09-02]. http://link.springer.com/content/pdf/10.1007%2F978-3-642-21657-2_38.pdf.
[5] Jiang Guoqian, Liu Hongfang, Solbrig H R, et al. ADEpedia2.0: Integration of normalized adverse drug events knowledge from the UMLS[EB/OL].[2014-01-20]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845793/.
[6] Ye Min. Text mining for building a biomedical knowledge base on diseases, risk factors, and symptoms[D]. Saarland:Saarland University, 2011.
[7] Nguyen V, Bodenreider O, Srinivasan J, et al. IExplore:Interactive browsing and exploring biomedical knowledge[EB/OL].[2014-01-20]. http://challenge.semanticweb.org/2012/submissions/swc2012_submission_3.pdf.
[8] Nguyen V, Bodenreider O, Minning T. The knowledge-driven exploration of integrated biomedical knowledge sources facilitates the generation of new hypotheses[EB/OL].[2014-01-20]. http://ceur-ws.org/Vol-783/paper6.pdf.
[9] Wilkowski B. Semantic approaches for knowledge discovery and retrieval in biomedicine[D]. Copenhagen: Technical University of Denmark, 2011.
[10] MacKellar B, Schweikert C, Chun S A. Patient-oriented clinical trials search through semantic integration of linked open data[EB/OL].[2014-01-20]. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6622247.
[11] 李亚子, 钱庆, 刘峥, 等. 基于UMLS的疾病知识整合框架研究[J]. 现代图书情报技术, 2011(2):34-41.
[12] 温有奎, 焦玉英. 知识元语义链接模型研究[J]. 图书情报工作, 2010, 54(12):27-31.
[13] 邱均平, 王菲菲. 基于共现与耦合的馆藏文献资源深度聚合研究探析[J]. 中国图书馆学报, 2013, 39(3):25-33.
[14] 贺德方, 曾建勋. 基于语义的馆藏资源深度聚合研究[J]. 中国图书馆学报, 2012, 38(4):79-87.
[15] NLM. The semantic network[EB/OL].[2013-08-15]. http://www.nlm.nih.gov/research/umls/new_users/online_learning/SEM_001.htm.
[16] NLM. The UMLS semantic network files[EB/OL].[2013-08-10]. http://semanticnetwork.nlm.nih.gov/Download.
[17] Rindflesch T, Aronson A. Semantic processing for enhanced access to biomedical knowledge[EB/OL].[2013-06-10]. http://skr.nlm.nih.gov/papers/references/semwebapp.5a.pdf.
[18] Rindflesch T, Fiszman M, Libbus B. Semantic interpretation for the biomedical research literature[EB/OL].[2013-06-10]. http://ai.arizona.edu/mis596a/book_chapters/medinfo/Chapter_14.pdf.
[19] NLM. SPECIALIST text tools[EB/OL].[2013-07-22]. http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/textTools/current/.
[20] NLM. SKR Web API[EB/OL].[2013-09-12]. http://skr.nlm.nih.gov/SKR_API/.
[21] NLM. Java-based API to the semantic knowledge representation[EB/OL].[2013-07-22]. http://skr.nlm.nih.gov/SKR_API/SKR_Web_API_V2_1.jar.
[22] Rsner D. Wissensbasierte systeme und dokumentverarbeitung[EB/OL].[2013-08-10]. http://wdok.cs.uni-magdeburg.de/Members/miotto/diplomarbeit/ontologien-und-beispiel/cms.owl.
[23] CPAN. UMLS-similarity[EB/OL].[2013-07-20]. http://search.cpan.org/dist/UMLS-Similarity/.
[24] The open graph viz platform[EB/OL].[2013-07-25]. https://gephi.org/.