理论研究

层次视角下概念知识网络的三元关系形态研究

  • 胡昌平 ,
  • 陈果
展开
  • 1. 武汉大学信息资源研究中心;
    2. 武汉大学信息管理学院
胡昌平,武汉大学信息资源研究中心教授,博士生导师。

收稿日期: 2014-01-20

  修回日期: 2014-02-10

  网络出版日期: 2014-02-20

基金资助

本文系国家自然科学基金项目“数字图书馆社区的知识聚合与服务研究”(项目编号:71273197)研究成果之一。

Research on Ternary Relationship of the Conceptual Knowledge Network from the Hierarchy Perspective

  • Hu Changping ,
  • Chen Guo
Expand
  • 1. Center for Studies of Information Resources, Wuhan University, Wuhan 430072;
    2. School of Information Management, Wuhan University, Wuhan 430072

Received date: 2014-01-20

  Revised date: 2014-02-10

  Online published: 2014-02-20

摘要

基于关键词共现的概念知识网络具有明显的层次结构,以节点k-core值为依据可将其划分出层次。引入三元闭包作为知识网络分析的基本单元,在层次视角下,三元闭包存在多样性,可用于描述节点的同层聚集、知识融合、知识分化等多种现象。以“数字图书馆”领域为例,由其关键词组成的概念知识网络可进行分层,引入节点层级差异和三元闭包类型后,可以更深入地分析知识网络中节点的微观关联结构。

本文引用格式

胡昌平 , 陈果 . 层次视角下概念知识网络的三元关系形态研究[J]. 图书情报工作, 2014 , 58(04) : 11 -16 . DOI: 10.13266/j.issn.0252-3116.2014.04.002

Abstract

The conceptual knowledge network based on keyword co-occurrence is a complex network with hierarchical structure, which can be divided into different layers in term of the k-core value of nodes. This paper introduces the theory of triadic closure as the basic unit of network structure analysis.From the hierarchical perspective, different type of triadic closures can represent different structure of knowledge connections, such as the cluster of similar nodes, knowledge fusion and knowledge differentiation.In the case of digital libraries, conceptual knowledge network with keywords can be divided into three layers.Based on the distinctions of nodes and triadic closures, it can make a deeper analysis on the microscopic connection structure among nodes in the knowledge network.

参考文献

[1] Su H N, Lee P C.Mapping knowledge structure by keyword co-occurrence:A first look at journal papers in Technology Foresight[J].Scientometrics, 2010, 85(1): 65-79.
[2] 张金柱, 韩涛, 王小梅.复杂网络在图情领域的研究和应用综述[J].情报学报, 2012, 31(9): 907-914.
[3] 刘向, 马费成, 陈潇俊, 等.知识网络的结构与演化——概念与理论进展[J].情报科学, 2011, 29(6): 801-809.
[4] Wasserman S, Faust K.Social network analysis:Methods and application[M].New York: Cambridge University Press, 1994:25
[5] Klimek P, Thurner S.Triadic closure dynamics drives scaling laws in social multiplex networks[J].New Journal of Physics, 2013, 15(6): 063008.
[6] Li Menghui, Zou Hailin, Guan Shuguang, et al.A coevolving model based on preferential triadic closure for social media networks[J].Scientific Reports, 2013, 3: 2512.
[7] Lou Tiancheng, Tang Jie, Hopcroft J, et al.Learning to predict reciprocity and triadic closure in social networks[J].ACM Transactions on Knowledge Discovery from Data (TKDD), 2013, 7(2): 5.
[8] Triadic closure[CP/OL].[2013-07-25].http://en.wikipedia.org/wiki/Triadic_closure
[9] Heider F.The psychology of interpersonal relations[M].New York:Wiley, 1958.
[10] Mollenhorst G, Vlker B, Flap H.Shared contexts and triadic closure in core discussion networks[J].Social Networks, 2011, 33(4): 292-302.
[11] Kossinets G, Watts D J.Empirical analysis of an evolving social network[J].Science, 2006, 311(5757): 88-90.
[12] 董克, 刘德洪, 江洪.基于三方关系组的引用网络结构分析[J].情报理论与实践, 2010(11): 013.
[13] 冷伏海, 王林, 李勇.基于文献关键词的三元共词分析方法——以知识发现领域为例[J].情报学报, 2011, 30(10): 1072-1077.
[14] 李树青.基于三词共现分析的学者主要研究兴趣识别及个性化外文推荐服务的实现[J].情报学报, 2013, 32(6): 629-639.
[15] Zhang Juan, Xie Jun, Hou Wanli, et al.Mapping the knowledge structure of research on patient adherence: Knowledge domain visualization based co-word analysis and social network analysis[J].PLoS ONE, 2012, 7(4): e34497.
[16] Clauset A, Moore C, Newman M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature, 2008, 453(7191): 98-101.
[17] Ravasz E, Barabási A L.Hierarchical organization in complex networks[J].Physical Review E, 2003, 67(2): 026112.
[18] Simon H A.The architecture of complexity[J].Proceedings of the American Philosophical Society, 1962, 106(6):467-482.
[19] Sales-Pardo M, Guimera R, Moreira A A, et al.Extracting the hierarchical organization of complex systems[J].Proceedings of the National Academy of Sciences, 2007, 104(39): 15224-15229.
[20] Clauset A, Moore C, Newman M E J.Structural inference of hierarchies in networks[M]//Statistical network analysis: Models, issues, and new directions.New York:Springer Berlin Heidelberg, 2007: 1-13.
[21] Alvarez-Hamelin J I, Dall'Asta L, Barrat A, et al.K-core decomposition of Internet graphs: Hierarchies, self-similarity and measurement biases[J].Networks and Heterogeneours Media, 2008, 3(2):371-393.
[22] Zhang Guoqing, Zhang Guoqiang, Yang Qingfeng, et al.Evolution of the Internet and its cores[J].New Journal of Physics, 2008, 10(12): 123027.
[23] Carmi S, Havlin S, Kirkpatrick S, et al.A model of Internet topology using k-shell decomposition[J].Proceedings of the National Academy of Sciences, 2007, 104(27): 11150-11154.
[24] 赵蓉英.论知识网络的结构[J].图书情报工作, 2007, 51(9): 6-10.
[25] 韩涛.知识结构演化深度分析的方法及其实现[D].北京:中国科学院文献情报中心, 2008.
[26] 苏新宁, 夏立新.2000-2009 年我国数字图书馆研究主题领域分析——基于 CSSCI 关键词统计数据[J].中国图书馆学报, 2011, 37(4): 60-69.
[27] Liu Gaoyong, Hu Jiming, Wang Huiling.A co-word analysis of digital library field in China[J].Scientometrics, 2012, 91(1): 203-217.

文章导航

/