[目的/意义] 在科学研究中,从不同来源的科技文献中识别挖掘科研热点对于开展科研工作具有指导意义。旨在通过本研究提出的模型方法,快速准确地识别蕴含在多源文本中的热点主题,为科研创新提供支撑服务。[方法/过程] 提出一种基于LDA2vec模型的多源文本下科研热点识别的方法并针对科研热点识别构建模型,该方法融合LDA主题模型对隐含语义挖掘的优势和Word2Vec词向量模型对于上下文关系把握的优势。以机器学习领域的科技文献为例,利用模型困惑度和主题一致性两个指标对LDA2vec的在本领域应用的可行性和有效性进行验证,并与LDA的主题提取效果进行对比。[结果/结论] 实验结果表明,提出的方法在面对多源数据情况下,进行科研热点识别挖掘是可行的,且在一定程度上有效果的提升,对利用单一数据源进行主题分析的不足进行补充,对多数据源融合的实践应用进行丰富。
关键词:主题模型|LDA2vec|科研热点|LDA|Word2vec|多源数据融合