[1] Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990,114(2):211-244.
[2] Hofmann T. Probabilistic latent semantic analysis[C]//Proceedings of the Twenty-Second Annual International SIGIR,Conference on Research and Development in Information Retrieval.New York:ACM,1999:50-57.
[3] Blei D M, Ng A Y, Jordan M L, et al. Latent Dirichlet allocation[J].Journal of Machine Learning Research, 2003,3(2):993-1022.
[4] Blei D M. Probabilistic topic models[J]. Communications of the ACM,2012,55(4):77-84.
[5] Barbieri N, Manco G, Ritacco E, et al. Probabilistic topic models for sequence data[J]. Machine Learning,2013,93(1):5-29.
[6] Isaly L, Trias E, Peterson G. Improving the latent Dirichlet allocation document model with WordNet[C]//Proceedings of the 5th International Conference on Information Warfare and Security.London:Academic Conferences Ltd,2010:163-170.
[7] Hofmann T. Unsupervised learning by probabilistic latent semantic analysis[J].Machine Learning,2001,42(1):177-196.
[8] Du Lan, Buntine W, Jin Huidong, et al. Sequential latent Dirichlet allocation[J]. Knowledge and Information Systems,2012,31(3):475-503.
[9] Mohd M, Crestani F, Ruthven I. Evaluation of an interactive topic detection and tracking interface[J]. Journal of Information Science,2012,38(4):383-398.
[10] Aksoy C, Can F, Kocberber S. Novelty detection for topic tracking[J].Journal of The American Society for Information Science and Technology,2012,63(4):777-795.
[11] 余传明,张小青,陈雷,等.基于LDA模型的评论热点挖掘:原理与实现[J].情报理论与实践,2010,33(5):103-106.
[12] 刘洪涛,肖开洲,吴渝,等.带舆论评价的引文网络构建与主题发现[J].情报学报,2011,30(4):441-448.
[13] 黄颖. LDA及主题词相关性的新事件检测[J].计算机与现代化,2012(1): 6-9,13.
[14] Kang J H, Lerman K, Plangprasopchok A. Analyzing microblogs with affinity propagation[C]//Proceedings of KDD Workshop on Social Media Analytics. New York:ACM,2010:67-70.
[15] Gohr A, Hinneburg A, Schult R, et al. Topic evolution in a stream of documents[C]//Proceeding of the Society for Industrial and Applied Mathematics. Washington: National Academy of Science, 2009:859-870.
[16] Griffiths T L,Steyvers M. Finding scientific topics[C]//Proceedings of the National Academy of Science. Washington: National Academy of Sciences, 2004:5228-5235.
[17] Walsh B. Markov chain monte carlo and Gibbs sampling[EB/OL].[2014-01-05]. http://web.mit.edu/~wingated/www/introductions/mcmc-gibbs-intro.pdf.
[18] 楚克明. 基于LDA的新闻话题演化研究[D].上海:上海交通大学,2010.
[19] 谭松波,王月粉.中文文本分类语料库-TanCorpV1.0[EB/OL].[2011-11-10].http://www.searchforum.org.cn/tansongbo/corpus.htm.
[20] 中国科学院计算技术研究所. ICTCLAS2011[EB/OL].[2010-12-21]. http://ictclas.org/ictclas_download.aspx.
[21] Guo Xin, Xiang Yang, Chen Qian, et al. LDA-based online topic detection using tensor factorization[J]. Journal of Information Science,2013,39(4): 459-469.
[22] 单斌,李芳.基于LDA话题演化研究方法综述[J].中文信息学报,2010,24(6):43-49,68.
[23] Cao Juan, Xia Tian, Li Jintao, et al. A density-based method for adaptive LDA model selection[J]. Neurocomputing, 2009,72(7-9): 1775-1781. |