[1] Sebastiani F. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002, 34(1): 1-47.
[2] 王煜, 白石, 王正欧. 基于特征权重优化的改进 KNN Web 文本分类算法[J]. 情报学报, 2007, 26(5): 643-647.
[3] Yang Y, Liu X. A re-examination of text categorization methods[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 1999: 42-49.
[4] Jing Yongxia, Gou Heping, Zhu Yaling. An improved density-based method for reducing training data in KNN[C]//The 2013 International Conference on Computational and Information Sciences. Piscataway:IEEE, 2013: 972-975.
[5] 刘海峰, 姚泽清, 苏展, 等. 文本分类中基于 K-means 的类偏斜 KNN 样本剪裁[J]. 微电子学与计算机, 2012, 29(5): 24-28.
[6] 王超学, 潘正茂, 马春森, 等. 改进型加权 KNN 算法的不平衡数据集分类[J]. 计算机工程, 2012, 38(20): 160-163.
[7] Wei G Y, Zou L, Pan J. Improved text classification algorithm for spam filtering based on CABSOFV[J]. WIT Transactions on Engineering Sciences, 2014, 86:1131-1139.
[8] Liu Zuoguo, Chen Xiaorong. A graph-based text similarity algorithm[C]//2012 National Conference on Information Technology and Computer Science. Beijing:Atlantis Press, 2012.
[9] Giannakopoulos G, Mavridi P, Paliouras G, et al. Representation models for text classification: A comparative analysis over three Web document types[C]//Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics. New York:ACM, 2012: 13.
[10] W Jiangning, L Qiaofeng. Research on text similarity computing based on max-common subgraphs[J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(5): 785-791.
[11] 涂新辉, 张红春, 周琨峰,等. 中文维基百科的结构化信息抽取及词语相关度计算方法[J]. 中文信息学报, 2012, 26(3): 109-115.
[12] 赵辉, 刘怀亮, 范云杰. 复杂网络理论在中文文本特征选择中的应用研究[J]. 现代图书情报技术, 2012(9): 23-28. |