[1] 蔺丰奇,刘益.信息过载问题研究述评[J].情报理论与实践,2007(5):710-714.
[2] 胡昌平,周怡.数字化信息服务交互性影响因素及服务推进分析[J].中国图书馆学报,2008(6):53-57.
[3] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009(2):350-362.
[4] 景民昌.从ACM RecSys'2014国际会议看推荐系统的热点和发展[J].现代情报,2015(4):41-45.
[5] 宋辉.电子商务推荐系统用户采纳影响因素研究[D].哈尔滨:哈尔滨工业大学,2011.
[6] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:asurvey of the state-of-the-art and possible extensions[J].IEEE transactions on knowledge and data engineering, 2005,17(6):734-749.
[7] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012:44-59.
[8] LU J, WU D, MAO M, et al. Recommender system application developments[J].Decision support systems, 2015,74(C):12-32.
[9] SU X, KHOSHGOFTAAR T. A survey of collaborative filtering techniques[J].Advances in artificial intelligence, 2009, 2009(4):1-19.
[10] 李杰,徐勇,王云峰,等.面向个性化推荐的强关联规则挖掘[J].系统工程理论与实践,2009(8):144-152.
[11] STECK H. Gaussian ranking by Mmatrixfactorization[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:115-122.
[12] BHAGAT S, WEINSBERG U, IOANNIDIS S, et al. Recommending with an agenda:active learning of private attributes using matrix factorization[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systems(RecSys'14). New York:ACM, 2014:65-72.
[13] VANCHINATHAN H, NIKOLIC I, BONA F, et al. Explore-exploit in top-N recommender systems via Gaussian processes[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systems(RecSys'14). New York:ACM, 2014:225-232.
[14] BABAS K, CHALKIADAKIS G, TRIPOLITAKIS E. You are what you consume:a Bayesian method for personalized recommendations[C]//YANG Q, et al. Proceedings of the 7th ACM conference on recommender systems(RecSys'13). New York:ACM, 2013:221-228.
[15] SCHELTER S, BODEN C, MARKL V. Scalable similarity-based neighborhood methods with MapReduce[C]//CUNNINGHAM P, et al. Proceedings of the 6th ACM conference on recommender systems(RecSys'12). New York:ACM, 2012:163-170.
[16] 沈旺,马一鸣,李贺.基于情境感知的用户推荐系统研究综述[J].图书情报工作,2015,59(21):128-138.
[17] VERSTREPEN K, GOETHALS B. Top-N recommendation for shared accounts[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:59-66.
[18] LU H, CAVERLEE J. Exploiting geo-spatial preference for personalized expert recommendation[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:67-74.
[19] HARIRI N, MOBASHER B, BURKE R. Context adaptation in interactive recommender systems[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systems(RecSys'14). New York:ACM, 2014:41-48.
[20] HARIRI N, MOBASHER B, BURKE R. Query-driven context aware recommendation[C]//YANG Q, et al. Proceedings of the 7th ACM conference on recommender systems(RecSys'13). New York:ACM, 2013:9-16.
[21] HARPER F, XU F, KAUR H, et al. Putting users in control of their recommendations[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systemsconference on recommender systems(RecSys'15). New York:ACM, 2015:3-10.
[22] EKSTRAND M, HARPER F, WILLEMSEN M, et al. User perception of differences in recommender algorithms[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systemsconference on recommender systems(RecSys'14). New York:ACM, 2014:161-168
[23] CREMONESI P, GARZOTTTO F, TURRIN R. User effort vs. accuracy in rating-based elicitation[C]//CUNNINGHAM P, et al. Proceedings of the 6th ACM conference on recommender systems(RecSys'12). New York:ACM, 2012:27-34.
[24] SPARLING E, SEN S. Rating:how difficult is it?[C]//MOBASHER B, et al. Proceedings of the 5th ACM conference on recommender systems(RecSys'11). New York:ACM, 2011:149-156.
[25] MCAULEY J, LESKOVEC J. Hidden factors and hidden topics:understanding rating dimensions with review text[C]//YANG Q, et al. Proceedings of the 7th ACM conference on recommender systems(RecSys'13). New York:ACM, 2013:165-172.
[26] YI X, HONG L, ZHONG E, et al. Beyond clicks:dwell time for personalization[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systems(RecSys'14). New York:ACM, 2014:113-120.
[27] OSTUNI V, NOIA T, SCIASCIO E, et al. Top-N recommendations from implicit feedback leveraging linked open data[C]//YANG Q, et al. Proceedings of the 7th ACM conference on recommender systems(RecSys'13). New York:ACM, 2013:85-92.
[28] CHANEY A, BLEI D, ELIASSI-RAD T. A probabilistic model for using social networks in personalized item recommendation[C]//WERTHNER H, et al.Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:43-50.
[29] DIAZ-AVILES E, DRUMOND L, SCHMIDT-THIEME L, et al. Real-time top-N recommendation in social streams[C]//CUNNINGHAM P, et al. Proceedings of the 6th ACM conference on recommender systems(RecSys'12). New York:ACM, 2012:59-66.
[30] KNIJNENBURG B, BOSTANDJIEV S, O'DONOVAN J, et al. Inspectability and control in social recommenders[C]//CUNNINGHAM P, et al. Proceedings of the 6th ACM conference on recommender systems(RecSys'12). New York:ACM, 2012:43-50.
[31] AHARON M, ANAVA O, AVIGDOR-ELGRABLI N, et al. ExcUseMe:asking users to help in item cold-start recommendations[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:83-90.
[32] BARJASTEH I, FORSATI R, MASROUR F, et al. Cold-start item and user recommendation with decoupled completion and transduction[C]//WERTHNER H, et al. Proceedings of the 9th ACM conference on recommender systems(RecSys'15). New York:ACM, 2015:91-98.
[33] LIU N, MENG X, LIU C, et al. Wisdom of the better few:cold start recommendation via representative based rating elicitation[C]//MOBASHER B, et al. Proceedings of the 5th ACM conference on recommender systems(RecSys'11). New York:ACM, 2011:37-44.
[34] SAVESKI M, MANTRACH A. Item cold-start recommendations:learning local collective embeddings[C]//KOBSA A, et al. Proceedings of the 8th ACM conference on recommender systems(RecSys'14). New York:ACM, 2014:89-96.
[35] STECK H. Item popularity and recommendation accuracy[C]//MOBASHER B, et al. Proceedings of the 5th ACM conference on recommender systems(RecSys'11). New York:ACM, 2011:125-132.
[36] VARGAS S, CASTELLS P. Rank and relevance in novelty and diversity metrics for recommender systems[C]//MOBASHER B, et al. Proceedings of the 5th ACM conference on recommender systems(RecSys'11). New York:ACM, 2011:109-116.
[37] 魏虎.推荐系统@淘宝[OL].[2016-04-10].http://wenku.baidu.com/view/4f1a38f54693daef5ef73db2.html.
[38] 赵斌强.个性化推荐技术在广告中的应用[OL].[2016-04-10]. http://wenku.it168.com/d_001181071.shtml.
[39] 周建丁.订单贡献率10%,京东个性化推荐系统持续优化的奥秘[OL].[2016-04-10]. http://m.csdn.net/article/2015-04-15/2824476.
[40] 刘尚堃.京东数据驱动下的个性化推荐系统[OL].[2016-04-10]. http://www.36dsj.com/archives/36841.
[41] LINDEN G, SMITH B, YORK J. Amazon.com recommendations:item-to-item collaborative filtering[J]. IEEE Internet computing, 2003,7(1):76-80. |