图书情报工作 ›› 2017, Vol. 61 ›› Issue (7): 96-101.DOI: 10.13266/j.issn.0252-3116.2017.07.014

• 知识组织 • 上一篇    下一篇

作者三重耦合分析在知识图谱绘制中的应用研究

王冰璐1, 步一2, 徐扬1   

  1. 1. 北京大学信息管理系 北京 100871;
    2. 印第安纳大学信息学与计算机学院 印第安纳布鲁明顿 47408
  • 收稿日期:2016-12-18 修回日期:2017-03-06 出版日期:2017-04-05 发布日期:2017-04-05
  • 作者简介:王冰璐(ORCID:0000-0002-5712-5950),本科生;步一(ORCID:0000-0003-2549-4580),博士研究生;徐扬(ORCID:0000-0001-6799-6832),副教授,博士,通讯作者,E-mail:yang.xu@pku.edu.cn。

Towards Author Bibliographic Tripling Analysis in Mapping Knowledge Domains

Wang Binglu1, Bu Yi2, Xu Yang1   

  1. 1. Department of Information Management, Peking University, Beijing 100871;
    2. School of Informatics and Computing, Indiana University, Bloomington 47408
  • Received:2016-12-18 Revised:2017-03-06 Online:2017-04-05 Published:2017-04-05

摘要: [目的/意义] 提出三重耦合概念,以期通过改变传统耦合的作者频次计算方法,改进因偶然因素产生的过耦合现象,提高领域知识谱图绘制的准确度。[方法/过程] 将原始矩阵构建从二重耦合计数改进为三重耦合计数,转化为相关矩阵后,对三维矩阵进行降维处理,通过Gephi软件绘制科学知识图谱并进行数据揭示与分析。[结果/结论] 实证研究结果显示,三重耦合一方面保留了二重耦合的领域分析能力,另一方面提高了聚类结果的准确性,更为有效地进行作者可视化分析,有利于领域图谱绘制和子领域发现,挖掘出科学共同体的更多细节。

关键词: 作者三重耦合, 三重耦合分析, 耦合分析, 引文分析, 信息计量学

Abstract: [Purpose/significance] This paper proposesthe concept of author bibliographic tripling analysis in order to decrease the negative effects of over-bibliographic-coupling by modifying the definition of author bibliographic coupling method. The main purpose of author bibliographic tripling analysis is to improve the accuracy of knowledge domain mappings. [Method/process] This paper modifies the coupling frequency calculation into tripling frequency calculation and decreases the number of dimensions of the three-dimension matrix. Gephi is employed to analyze the data and visualize the network. [Result/conclusion] According to the results of the empirical studies, our proposed author bibliographic tripling method enhances the performance of knowledge domain mappings, which facilitates to find more sub-fields in visializations.

Key words: author bibliographic tripling, bibliographic tripling analysis, coupling analysis, citation analysis, informetrics

中图分类号: