[1] RADZIEMSKI L J. From LASER to LIBS, the path of technology development[J]. Spectrochimica Acta part B:atomic spectroscopy, 2002, 57(7):1109-1113.
[2] 王纬. 德尔菲调查法与技术路线图结合的技术预测研究——以太原市"十二五"技术发展预测为例[J]. 中国科技论坛, 2011(4):103-107.
[3] 徐骥, 张卫国, 罗军. 基于技术路线图分析法和AHP的企业技术发展路径规划[J]. 科学学与科学技术管理, 2010, 31(11):13-18.
[4] 潘颖. 基于专利引证强度的关键技术发展路径研究[J]. 情报理论与实践, 2014, 37(12):71-75.
[5] 许冠南, 谢梦娇, 潘美娟,等. 3D打印产业技术的演变与预测研究——基于专利主路径分析[J]. 北京邮电大学学报(社会科学版), 2016, 18(4):77-85.
[6] 韩毅, 金碧辉. 基于连通性的引文网络结构分析新视角:主路径分析[J]. 科学学研究, 2012, 30(11):1634-1640.
[7] 秦晓慧, 乐小虬. 基于LDA主题关联过滤的领域主题演化研究[J]. 现代图书情报技术, 2015, 31(3):18-25.
[8] 赵迎光, 洪娜, 安新颖. 主题模型在主题演化方法中的应用研究进展[J]. 现代图书情报技术, 2014, 30(10):63-69.
[9] 洪宇, 张宇, 刘挺,等. 话题检测与跟踪的评测及研究综述[J]. 中文信息学报, 2007, 21(6):71-87.
[10] 崔雷, 王孝宁. 学科主题演变的深度挖掘分析——以普通外科学为例[J]. 医学信息学杂志, 2009, 30(8):5-10.
[11] 唐果媛, 张薇. 基于共词分析法的学科主题演化研究进展与分析[J]. 图书情报工作, 2015, 59(5):128-136.
[12] 刘志辉, 张志强. 作者关键词耦合分析方法及实证研究[J]. 情报学报, 2010, 29(2):268-275.
[13] 伍若梅, 孔悦凡. 共词分析与共引分析方法的比较研究[J]. 情报资料工作, 2010(1):26-29.
[14] 李纲, 巴志超. 共词分析过程中的若干问题研究[J]. 中国图书馆学报, 2017, 43(4):93-113.
[15] 李湘东, 张娇, 袁满. 基于LDA模型的科技期刊主题演化研究[J]. 情报杂志, 2014(7):115-121.
[16] 倪丽萍, 刘小军, 马驰宇. 基于LDA模型和AP聚类的主题演化分析[J]. 计算机技术与发展, 2016, 26(12):6-11.
[17] BLEI D, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning.Pittsburgh:ACM, 2006:113-120.
[18] ROSEN-ZVI M, GRIFFITHS T, STEYVERS M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on uncertainty in artificial intelligence.Arlington:AUAI Press, 2004:487-494.
[19] 史庆伟, 乔晓东, 徐硕,等. 作者主题演化模型及其在研究兴趣演化分析中的应用[J]. 情报学报, 2013, 32(9):912-919.
[20] CHANG J, BLEI D. Relational topic models for document networks[C]//Proceedings of the artificial intelligence and statistics.Clearwater Beach:JMLR.org,2009:81-88.
[21] 李杰,陈超美. Citespace:科技文本挖掘及可视化[M]. 北京:首都经济贸易大学出版社, 2016.
[22] HAVRE S, HETZLER E, WHITNEY P, et al. ThemeRiver:visualizing thematic changes in large document collections[J]. IEEE transactions on visualization & computer graphics, 2002, 8(1):9-20.
[23] CUI W, LIU S, TAN L, et al. TextFlow:towards better understanding of evolving topics in text[J]. IEEE transactions on visualization & computer graphics, 2011, 17(12):2412-2421.
[24] 刘萍, 郭月培, 郭怡婷. 利用作者关键词网络探测作者相似性[J]. 现代图书情报技术, 2013(12):62-69.
[25] LI H, ABE N. Word clustering and disambiguation based on co-occurrence data[C]//International conference on computational linguistics. Montreal:Association for Computational Linguistics, 1998:749-755.
[26] TANG J. AMiner:mining deep knowledge from big scholar data[C]//International conference companion on world wide Web.San Francisco:International World Wide Web Conferences Steering Committee, 2016:373-373.
[27] ROSE S,ENGEL D, CRAMER N, et al.Automatic Keyword Extraction from Individual Documents[M]//BERRY M W, KOGAN J.Text mining:applications and theory. Chichester:John Wiley & Sons,Ltd, 2010:1-20.
[28] ARTHUR D, VASSILVITSKⅡ S. k-means++:The advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms.Philadelphia:Society for Industrial and Applied Mathematics, 2007:1027-1035.
[29] 周爱武, 于亚飞. K-Means聚类算法的研究[J]. 计算机技术与发展, 2011, 21(2):62-65.
[30] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Advances in neural information processing systems. Vancouver:NIPS Foundation,2002:849-856.
[31] 刘志伟. 谱聚类中的相似度矩阵研究[J]. 现代计算机, 2010(15):67-69.
[32] 吕泽宇. 人工智能的历史、现状与未来[J]. 信息与电脑, 2016(13):166-167.
[33] 王丽雅. 基于CNKI的计算机科学学科半衰期分析[J]. 图书与情报, 2015(1):100-105.
[34] 田金萍. 人工智能发展综述[J]. 科技广场, 2007(1):230-232.
[35] LINDSAY R K, BUCHANAN B G, FEIGENBAUM E A, et al. DENDRAL:a case study of the first expert system for scientific hypothesis formation[J]. Artificial intelligence, 1993, 61(2):209-261.
[36] SAMPLE S, DJERASSI C. Mass spectrometry in structural and stereochemical problems[J].Journal of the American Chemical Society, 1966, 88(9):1937-1943.
[37] SUWA M, SCOTT A C, SHORTLIFFE E H. An approach to verifying completeness and consistency in a rule-based expert system[J]. AI magazine, 1982, 3(4):16.
[38] FARRENY H, PRADE H, WYSS E. Approximate reasoning in a rule-based expert system using posibility theory:a case study[M]. Paris:Laboratoire des Langages et systèmesinformatiques,1985:407-414.
[39] KJELDSEN R, COHEN P R. Evolution and performance of the grant system[J]. IEEE Expert-intelligent systems and their applications, 1987, 2(2):73-79.
[40] JENNINGS N R. On agent-based software engineering[J]. Artificial intelligence, 2000, 117(2):277-296.
[41] PAEK T, HORVITZ E. Uncertainty, Utility, and misunderstanding:a decision-theoretic perspective on grounding in conversational systems[J]. Proceedings of the aaai fall symposium on psychological models of communication in collaborative systems.Cape Cod:AAAI Press,1999:85-92.
[42] CRAVEN M, DIPASQUO D, FREITAG D, et al. Learning to extract symbolic knowledge from the World Wide Web[J]. Coastal management, 1998, 31(2):121-126.
[43] ZHOU H, YU H, HU R. Topic evolution based on the probabilistic topic model:a review[J]. Frontiers of computer science, 2017, 11(5):786-802. |