[1] 毕强,刘健.基于领域本体的数字文献资源聚合及服务推荐方法研究[J].情报学报,2017,36(5):452-460.
[2] WALTERS W H. Google Scholar coverage of a multidisciplinary field[J]. Information processing & management, 2007, 43(4):1121-1132.
[3] YANG S Q, WAGNER K. Evaluating and comparing discovery tools:how close are we towards next generation catalog?[J]. Library hi tech, 2010, 28(4):690-709.
[4] MICHAEL G. The evaluation of discovery services at Lynchburg College:2009-2010[J]. College & undergraduate libraries, 2012, 19(2-4):387-397.
[5] 秦红.普适计算环境中的数字资源感知服务框架探讨[J].图书情报工作,2014,58(5):13-16,21.
[6] 张钧.基于用户画像的图书馆知识发现服务研究[J].图书与情报,2017(6):60-63.
[7] GUAN P, WANG Y F. Personalized scientific literature recommendation based on user's research interest[C]//International conference on natural computation, Fuzzy systems and knowledge discovery. Changsha:IEEE, 2016:1273-1277.
[8] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook[M]. New York:Springer, 2011.
[9] RAZMERITA L. An ontology-based framework for modeling user behavior-a case study in knowledge management[J]. IEEE transactions on systems, man, and cybernetics-part A:systems and humans, 2011,41(4):772-783.
[10] 李学明,李海瑞,薛亮,等.基于信息增益与信息熵的TFIDF算法[J].计算机工程,2012,38(8):37-40.
[11] 王振振,何明,杜永萍.基于LDA主题模型的文本相似度计算[J].计算机科学,2013,40(12):229-232.
[12] 王传清,毕强. 超网络视域下的数字资源深度聚合研究[J]. 情报学报,2015(1):4-13.
[13] 刘洪伟,高鸿铭,陈丽,等.基于用户浏览行为的兴趣识别管理模型[J].数据分析与知识发现,2018(2):74-85.
[14] 曾子明,金鹏.基于用户兴趣变化的数字图书馆知识推荐服务研究[J].图书馆论坛,2016,36(1):94-99.
[15] KRISHNAMOORTHY R, SUNEETHA K R. User interest estimation using behavior monitoring measure[J]. Transplantation, 2013, 78(2):651-652.
[16] CLAYPOOL M, BROWN D, LE P, et al. Inferring user interest[J]. IEEE internet computing, 2001, 5(6):32-39.
[17] ZHENG L, CUI S, YUE D, et al. User interest modeling based on browsing behavior[C]//International conference on advanced computer theory and engineering. Chengdu:IEEE, 2010:V5-455-V5-458.
[18] 张海鹏. 基于Web日志挖掘的个性化推荐研究[D].重庆:重庆大学,2007.
[19] JEH G, WIDOM J. SimRank:a measure of structural-context similarity[C]//Eighth ACM SIGKDD international conference on knowledge discovery and data mining. Edmonton:ACM, 2002:538-543.
[20] 尹丽玲,刘柏嵩,王洋洋.跨类型的学术资源优质推荐算法研究[J].情报学报,2017,36(7):715-722. |