[1] 黄炎秋. 建构主义国际关系视域下"一带一路"对非洲传播策略研究[D].武汉:华中师范大学, 2017.
[2] 朱桂生,黄建滨.美国主流媒体视野中的中国"一带一路"战略——基于《华盛顿邮报》相关报道的批评性话语分析[J].新闻界,2016(17):58-64.
[3] 龚言浩,甄峰,席广亮."一带一路"倡议关注与响应的空间格局——基于新浪微博数据的分析[J].地域研究与开发,2018,37(2):29-35.
[4] 贾爽. "一带一路":Twitter网络舆情分析与对策建议[D].南京:南京大学,2016.
[5] HOFMANN T. Probabilistic latent semantic indexing[J]. Sigir forum,2017, 51(2):211-218.
[6] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(1):993-1022.
[7] 陈晓美,高铖,关心惠. 网络舆情观点提取的LDA主题模型方法[J]. 图书情报工作,2015, 59(21):21-26.
[8] MICHELSON M, MACSKASSY S A. Discovering users' topics of interest on twitter:a first look[C]//Workshop on analytics for noisy unstructured text data. New York:ACM, 2010.
[9] YOOSUN H, HONGJIN S. Opinion leadership on twitter and twitter use-motivations and patterns of twitter use and case study of opinion leaders on twitter[J]. Korean journal of broadcasting and telecommunication studies, 2010, 24(6):365-404.
[10] HU Y, JOHN A, SELIGMANN D D. Event analytics via social media[C]//ACM workshop on social and behavioural networked media access. New York:ACM, 2011:39-44.
[11] MEI Q, ZHAI C X. A mixture model for contextual text mining[C]//Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2006:649-655.
[12] MOGHADDAM S, ESTER M. ILDA:Interdependent LDA model for learning latent aspects and their ratings from online product reviews[C]//Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2011:665-674.
[13] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning. New York:ACM, 2006:113-120.
[14] ALSUMAIT L, BARBARÁ D, DOMENICONI C. On-line lda:adaptive topic models for mining text streams with applications to topic detection and tracking[C]//Eighth IEEE international conference on Data mining. Washington, DC:IEEE, 2008:3-12.
[15] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems. New York:Curran Associates, Inc., 2013:3111-3119.
[16] GO A, BHAYANI R, HUANG L. Twitter sentiment classification using distant supervision[R]. Cs224n project report. Palo Alto:Stanford University, 2009.
[17] JANSEN B J, ZHANG M, SOBEL K, et al. Twitter power:tweets as electronic word of mouth[J]. Journal of the American Society for Information Science & Technology, 2009, 60(11):2169-2188.
[18] TUMASJAN A, SPRENGER T O, SANDNER P G, et al. Predicting elections with twitter:what 140 characters reveal about political sentiment[C]//International conference on weblogs and social media, Icwsm 2010. Washington, DC:DBLP, 2010.
[19] BOLLEN J, PEPE A, MAO H. Modeling public mood and emotion:twitter sentiment and socio-economic phenomena[J]. Computer science, 2009, 44(12):2365-2370.
[20] SHERIDAN D P, DECKER H K, KLOUMANN I M, et al. Temporal patterns of happiness and information in a global social network:hedonometrics and Twitter[J]. PlOS ONE, 2011, 6(12):e26752.
[21] HU M, LIU B. Mining and summarizing customer reviews[C]//Tenth ACM SIGKDD international conference on knowledge discovery and data mining. Seattle:ACM, 2004:168-177.
[22] ZHANG L, GHOSH R, DEKHIL M, et al. Combining lexiconbased and learning-based methods for Twitter sentiment analysis[EB/OL].[2018-04-03]. https://www.hpl.hp.com/techreports/2011/HPL-2011-89.pdf.
[23] 知网发布情感分析用词语集[EB/OL].[2018-03-08]. http://www.keenage.com/html/c_bulletin_2007.htm.
[24] FELDMAN R. Techniques and applications for sentiment analysis[M]. New York:ACM, 2013.
[25] VOLKOVA S, WILSON T, YAROWSKY D. Exploring sentiment in social media:bootstrapping subjectivity clues from multilingual twitter streams[C]//Proceedings of ACL 2013-51st Annual Meeting of the Association for Computational Linguistics.Sofia:ACL,2013:505-510.
[26] VOLKOVA S, WILSON T, YAROWSKY D. Exploring demographic language variations to improve multilingual sentiment analysis in social media[C]//Proceedings of conference on empirical methods in natural language processing. Seattle:ACL,2013:1815-1827.
[27] PANG B, LEE L, VAITHYANATHAN S. Thumbs up?:sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 conference on empirical methods in natural language processing-Volume 10. Philadelphia:ACM,2002:79-86.
[28] 张志华. 基于深度学习的情感词向量及文本情感分析的研究[D].武汉:华东师范大学,2016.
[29] 范云满, 马建霞. 基于LDA与新兴主题特征分析的新兴主题探测研究[J]. 情报学报, 2014, 33(7):698-711.
[30] 贺亮, 李芳. 基于话题模型的科技文献话题发现和趋势分析[J]. 中文信息学报, 2012, 26(2):109-116.
[31] 杨希. 基于情感词典与规则结合的微博情感分析模型研究[D].合肥:安徽大学,2014.
[32] 法媒称中巴经济走廊重振巴基斯坦[EB/OL].[2018-04-03]. http://news.163.com/17/0805/00/CR1LUS9A00018AOQ_all.html.
[33] 2017年我对"一带一路"沿线国家投资合作情况[EB/OL].[2018-04-03]. http://fec.mofcom.gov.cn/article/fwydyl/tjsj/201801/20180102699450.shtml.
[34] "一带一路"国际合作高峰论坛"政策沟通"平行主题会议签署32个合作协议[EB/OL].[2018-04-03]. http://www.xinhuanet.com/2017-05/14/c_1120970716.htm. |