[1] 何娟. 基于用户个人及群体画像相结合的图书个性化推荐应用研究[J].情报理论与实践,2019,42(1):129-133,160.
[2] ZHAO W X, WANG J, HE Y, et al. Mining product adopter information from online reviews for improving product recommendation[J]. ACM transactions on knowledge discovery from data, 2016, 10(3):1-23.
[3] 刘海, 卢慧, 阮金花, 等. 基于"用户画像"挖掘的精准营销细分模型研究[J].丝绸,2015,52(12):37-42,47.
[4] ALAOUI S, AJHOUN R, IDRISSI Y E B E, et al. Semantic approach for the building of user profile for recommender system[C]//Global summit on computer & information technology. Sousse:IEEE, 2016:114-119.
[5] ZHAO W X, GUO Y, HE Y, et al. We know what you want to buy:a demographic-based system for product recommendation on microblogs[C]//ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2014:1935-1944.
[6] ZHAO W X, LI S, HE Y, et al. Exploring demographic information in social media for product recommendation[J]. Knowledge and information systems, 2016, 49(1):61-89.
[7] 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J].情报理论与实践,2018,41(4):99-104,149.
[8] 余传明, 田鑫, 郭亚静, 等. 基于行为-内容融合模型的用户画像研究[J].图书情报工作,2018,62(13):54-63.
[9] 郭光明. 基于社交大数据的用户信用画像方法研究[D].合肥:中国科学技术大学,2017.
[10] 范晓玉, 窦永香, 赵捧未, 等. 融合多源数据的科研人员画像构建方法研究[J].图书情报工作,2018,62(15):31-40.
[11] MISLOVE A, VISWANATH B, GUMMADI K P, et al. You are who you know:inferring user profiles in online social networks[C]//ACM international conference on web search and data mining. New York:ACM,2010:251-260.
[12] 曹玖新, 吴江林, 石伟, 等. 新浪微博网信息传播分析与预测[J].计算机学报,2014,37(4):779-790.
[13] 刘勘, 袁蕴英, 刘萍. 基于随机森林分类的微博机器用户识别研究[J].北京大学学报(自然科学版),2015,51(2):289-300.
[14] 徐志明, 李栋, 刘挺, 等. 微博用户的相似性度量及其应用[J].计算机学报,2014,37(1):207-218.
[15] 林燕霞, 谢湘生. 基于社会认同理论的微博群体用户画像[J].情报理论与实践,2018,41(3):142-148.
[16] 张宏鑫, 盛风帆, 徐沛原, 等. 基于移动终端日志数据的人群特征可视化[J].软件学报,2016,27(5):1174-1187.
[17] 熊伟, 杭波, 李兵, 等. 一种集成用户画像与内容的服务重定向方法[J].小型微型计算机系统,2017,38(12):2762-2765.
[18] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics:theory and experiment, 2008(10):10008-10019.
[19] LESKOVEC J, LANG K J, MAHONEY M W. Empirical comparison of algorithms for network community detection[C]//ACM international conference on World Wide Web. Raleigh:ACM, 2010:631-640.
[20] STEINHAEUSER K, CHAWLA N V. Identifying and evaluating community structure in complex networks[J]. Pattern recognition letters, 2010, 31(5):413-421.
[21] ZHOU Y, CHENG H, YU J X. Graph clustering based on structural/attribute similarities[J]. Proceedings of the VLDB endowment, 2009, 2(1):718-729.
[22] XU Z, KE Y, WANG Y, et al. A model-based approach to attributed graph clustering[C]//ACM SIGMOD international conference on management of data. Scottsdale:ACM, 2012:505-516.
[23] 陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359.
[24] 吴树芳,徐建民,武晓波. 融合用户标签和关系的微博用户相似性度量[J].情报杂志,2014,33(12):170-173,126.
[25] TANG J, QU M, WANG M, et al. LINE:large-scale information network embedding[C]//International conference on World Wide Web. Florence:WWW, 2015:1067-1077.
[26] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical review e statistics nonlinear soft matter physics, 2003, 69(6):066133.
[27] MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information retrieval journal,2000, 3(2):127-163.
[28] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(1):993-1022.
[29] 潘理, 吴鹏, 黄丹华. 在线社交网络群体发现研究进展[J].电子与信息学报,2017,39(9):2097-2107. |