[1] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(Jan):993-1022.
[2] 张金松. 基于引文上下文分析的文献检索技术研究[D].大连:大连海事大学, 2013.
[3] HOFMANN T. Probabilistic latent semantic analysis[C]//Association for Uncertainty in Artificial Intelligence. Fifteenth conference on uncertainty in artificial intelligence. Stockholm:Morgan Kaufmann, 1999:289-296.
[4] 范云满, 马建霞. 利用LDA的领域新兴主题探测技术综述[J]. 现代图书情报技术, 2012, 28(12):58-65.
[5] KAWAMAE N. Trend analysis model:trend consists of temporal words, topics, and timestamps[C]//International conference on web search and data mining. Heng Kong:Association for Computing Machinery, 2011:317-326.
[6] ROSEN-ZVI M, GRIFFITHS T, STEYVERS M, et al. The author-topic model for authors and documents[C]//Association for Uncertainty in Artificial Intelligence. Proceedings of the 20th conference on uncertainty in artificial intelligence. Banff:Association for Uncertainty in Artificial Intelligence Press, 2012:487-494.
[7] COHN D, CHANG H. Learning to probabilistically identify authoritative documents[C]//Association for Computing Machinery. Proceedings of the seventeenth international conference on machine learning. San Francisco:Morgan Kaufmann Publishers, 2000:167-174.
[8] COHN D, HOFMANN T. The missing link:a probabilistic model of document content and hypertext connectivity[C]//Neural Information Processing Systems Foundation. Advances in neural information processing systems 13. Cambridge:NIPS, 2000:430-436.
[9] EROSHEVA E, FIENBERG S, LAFFERTY J. Mixed-membership models of scientific publications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(1):5220-5227.
[10] NGUYEN T, DO P. CitationLDA plus:an extension of LDA for discovering topics in document network[C]//Association for Computing Machinery. International symposium on information and communication technology. Danang City:Association for Computing Machinery, 2018:31-37.
[11] LI Y, HE J, LIU H. Topic analysis and influential paper discovery on scientific publications[C]//14th web information systems and applications conference. Liuzhou:IEEE, 2017:68-73.
[12] TU Y, JOHRI N, ROTH D, et al. Citation author topic model in expert search[C]//Association for Computational Linguistics. International conference on computational linguistics:posters. Beijing:Association for Computational Linguistics, 2010:1265-1273.
[13] LU Z, MAMOULIS N, CHEUNG D. A collective topic model for milestone paper discovery[C]//Association for Computing Machinery. Proceedings of the 37th international ACM SIGIR conference on research & development in information retrieval. Queensland:Association for Computing Machinery, 2014:1019-1022.
[14] GUO Z, ZHU S, CHI Y, et al. A latent topic model for linked documents[C]//Association for Computing Machinery. Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval. Boston:Association for Computing Machinery, 2009:720-721.
[15] HUANG X, CHEN C, PENG C, et al. Topic-sensitive influential paper discovery in citation network[C]//PacificAsia conference on knowledge discovery & data mining. Melbourne:Springer, 2018:16-28.
[16] ZHOU H, HUIMIN Y, ROLAND H. Topic discovery and evolution in scientific literature based on content and citations[J]. Frontiers of information technology & electronic engineering, 2017, 18(10):1511-1532.
[17] LIM K W, BUNTINE W. Bibliographic analysis on research publications using authors, categorical labels and the citation network[J]. Machine learning, 2016, 103(2):185-213.
[18] LIM K W, BUNTINE W. Bibliographic analysis with the citation network topic model[C]//Asian conference on machine learning. JMLR Workshop and conference proceedings. Nha Trang City:Springer, 2014, 39:142-158.
[19] ZHU Y, YAN X, GETOOR L, et al. Scalable text and link analysis with mixed-topic link models[C]//Association for Computing Machinery. Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. Chicago:Association for Computing Machinery, 2013, 47:473-481.
[20] YAN L, NICULESCU-MIZIL A, GRYC W. Topic-link LDA:joint models of topic and author community[C]//Association for Computing Machinery. Proceedings of the 26th annual international conference on machine learning. Montreal:Association for Computing Machinery, 2009:665-672.
[21] BAI H, CHEN Z, LYU M. Neural relational topic models for scientific article analysis[C]//Association for Computing Machinery. Proceedings of the 27th ACM international conference on information and knowledge management. Torino:Association for Computing Machinery, 2018:27-36.
[22] DIETZ L, BICKEL S, SCHEFFER T. Unsupervised prediction of citation influences[C]//Association for Computing Machinery. Proceedings of the 24th international conference on Machine learning. Corvalis:Association for Computing Machinery, 2007:233-240.
[23] KIM M, BAEK I, SONG M. Topic diffusion analysis of a weighted citation network in biomedical literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2):329-342.
[24] GUO Z, ZHANG Z M, ZHU S, et al. A two-level topic model towards knowledge discovery from citation networks[J]. IEEE transactions on knowledge & data engineering, 2014, 26(4):780-794.
[25] MASADA T, TAKASU A. Extraction of topic evolutions from references in scientific articles and its GPU acceleration[C]//Association for Computing Machinery. International conference on information and knowledge management. Maui:Association for Computing Machinery, 2012:1522-1526.
[26] NALLAPATI R M, AHMED A, XING E P, et al. Joint latent topic models for text and citations[C]//Association for Computing Machinery. Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. Las Vegas:Association for Computing Machinery, 2008:542-550.
[27] CHANG J, BLEI D M. Hierarchical relational models for document networks[J]. Annals of applied statistics, 2010, 4(1):124-150.
[28] TAN L S L, HUI C A, TIAN Z. Topic-adjusted visibility metric for scientific articles[J]. The annals of applied statistics, 2016, 10(1):1-31.
[29] HE Q, CHEN B, PEI J, et al. Detecting topic evolution in scientific literature:how can citations help?[C]//Association for Computing Machinery. Proceedings of the 18th ACM conference on information and knowledge management. Hong Kong:Association for Computing Machinery, 2009:957-966.
[30] SHEN J, SONG Z, LI S, et al. Modeling topic-level academic influence in scientific literatures[C]//Association for the Advancement of Artificial Intelligence. The workshops of the thirtieth AAAI conference on artificial Intelligence. Phoenix:Association for the Advancement of Artificial Intelligence, 2016:1-7.
[31] HUANG L, LIU H, HE J, et al. Finding latest influential research papers through modeling two views of citation links[C]//Asia-pacific web conference, Web technologies and applications. Suzhou:Springer, 2016:555-566.
[32] KIM J, KIM D, OH A. Joint modeling of topics, citations, and topical authority in academic corpora[J]. Transactions of the association for computational linguistics, 2017, 5(1):191-204.
[33] DAI T, ZHU L, CAI X, et al. Explore semantic topics and author communities for citation recommendation in bipartite bibliographic network[J]. Journal of ambient intelligence and humanized computing, 2018, 9(5):957-975.
[34] SMALL H. Citation context analysis[J]. Progress in communication sciences, 1982, 3(9):287-310.
[35] ALJABER B, STOKES N, BAILEY J, et al. Document clustering of scientific texts using citation contexts[J]. Information retrieval, 2010, 13(2):101-131.
[36] BORNMANN L, HAUNSCHILD R, HUG S E. Visualizing the context of citations referencing papers published by Eugene Garfield:a new type of keyword co-occurrence analysis[J]. Scientometrics, 2018, 114(2):427-437.
[37] DOSLU M, BIGNOL H O. Context sensitive article ranking with citation context analysis[J]. Scientometrics, 2016, 108(2):653-671.
[38] LIU S, CHEN C. The differences between latent topics in abstracts and citation contexts of citing papers[J]. Journal of the American Society for Information Science and Technology, 2013, 64(3):627-639.
[39] 杨春艳, 潘有能, 赵莉. 基于语义和引用加权的文献主题提取研究[J]. 图书情报工作, 2016, 60(9):131-138.
[40] LIU X, ZHANG J, GUO C. Full-text citation analysis:a new method to enhance scholarly networks[J]. Journal of the American Society for Information Science and Technology banner, 2013, 64(9):1852-1863.
[41] KATARIA S, MITRA P, BHATIA S. Utilizing context in generative bayesian models for linked corpus[C]//Association for Computing Machinery. Twenty-fourth AAAI conference on artificial intelligence. Atlanta:Association for Computing Machinery, 2010:1340-1345. |