[1] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of machine learning research, 2003(3):993-1022.
[2] BLEI D M, LAFFERTY J D. Dynamic topic model[C]//Proceedings of the 23rd international conference on machine learning. New York:ACM, 2006:113-120.
[3] WANG X R, MCCALLUM A. Topic over time:A non-markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIG KDD International conference on knowledge discovery and data mining. Philadelphia:ACM, 2006:424-433.
[4] YAN X H, GUO J F, LAN Y Y, et al. A biterm topic model for short texts[C]//Proceedings of the 22nd international conference on World Wide Web. New York:ACM. 2013:1445-1455.
[5] ZHAO F, ZHU Y J, JIN H, et al. A personalized hashtag recommendation approach using LDA-based topic model in microblog environment[J]. Future generation computer systems, 2016, 65:196-206.
[6] MAGNUSSON M, JONSSON L, VILLANI M. DOLDA:a regularized supervised topic model for high-dimensional multi-class regression[EB/OL].[2019-09-08]. https://doi.org/10.1007/s00180-019-00891-1.
[7] 解琰. 主题优化过滤方法与研究应用[D]. 大连:大连海事大学, 2015:26-27.
[8] 曲佳彬,欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现,2018,2(1):64-75.
[9] MACKAY D J C. Information theory, inference, and learning algorithms[M]. Cambridge:Cambridge University Press, 2003.
[10] 李保利,杨星. 基于LDA模型和话题过滤的研究主题演化分析[J]. 小型微型计算机系统,2012,3(12):2738-2743.
[11] ISHWARAN H, RAO J S. Spike and slab gene selection for multigroup microarray data[J]. Journal of the American Statistical Association, 2005, 100(471):764-780.
[12] CHANG Y L, LEE K F, CHIEN J T. Bayesian feature selection for sparse topic model[C]//IEEE international workshop on machine learning for signal processing (MLSP). Santander:IEEE, 2011:1-6.
[13] PONWEISER M, GRUN B. Finding scientific topics revisited[C]//CARPITA M, BRENTARI E, QANNARI E M. Advances in latent variables. Berlin:Springer, 2014:93-100.
[14] 关鹏,王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9):42-50.
[15] GROSSMAN D A, Frieder O. Information retrieval:algorithms and heuristics[M]. Berlin:Springer, 2004.
[16] LEE L. On the Eectiveness of the skew divergence for statistical language analysis[C]//RICHARDSON T S, JAAKKOLA T S. Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics. Key West:Society for Artificial Intelligence and Statistics, 2001:65-72.
[17] CAO J, XIA T, LI J, et al. A density-based method for adaptive LDA model selection[J]. Neurocomputing, 2009, 72(7/9):1775-1781.
[18] CALLON M, COOUTIAL J P, LAVILLE F. Co-word analysis as a tool for describing the network of interactions between basic and technological research:the case of polymer chemistry[J]. Scientometrics, 1991, 22(1):155-205.
[19] WANG Z Y, LI G, LI C Y, et al. Research on the semantic-based co-word analysis[J]. Scientometrics, 2012, 90(3):855-875.
[20] TURNER K, LYNCH C, ROUSE H, et al. Direct single-cell analysis of human polar bodies and cleavage-stage embryos reveals no evidence of the telomere theory of reproductive ageing in relation to aneuploidy generation[J]. Cells, 2019,8(2):1-17.
[21] FLETCHER R B, DAS D, GADYE L, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution[J]. Cell stem cell, 2017, 20(6):817-830.
[22] JACOBSEN S E W, NERLOV C. Haematopoiesis in the era of advanced single-cell technologies[J]. Natrue cell biology, 2019, 21(1):2-8.
[23] GERDES M J, GÖKMEN-POLAR Y, SUI Y, et al. Single cell heterogeneity in ductal carcinoma in situ of breast[J]. Modern pathology, 2018,31(3):406-417.
[24] DAVIS K M, ISBERG R R. Defining heterogeneity within bacterial populations via single cell approaches[J]. Bioessays, 2016, 38(8):782-790.
[25] KOSTOFF R N. Co-word analysis[C]//BOZEMAN B, MELKERS J. Evaluating R&D impacts:methods and practice. New York:Springer, 1993:63-78. |