[1] 张洪石. 突破性创新动因与组织模式研究[D]. 杭州:浙江大学, 2005.
[2] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[3] 罗瑞, 许海云, 董坤. 领域前沿识别方法综述[J]. 图书情报工作,2018,62(23):119-131.
[4] 张金柱, 张晓林. 基于专利科学引文的突破性创新识别研究述评[J]. 情报学报,2016,35(09):955-962.
[5] 万宁. 浅析颠覆性创新、破坏性创新和突破性创新三者关系[J]. 商, 2015(30):122-123.
[6] 陈傲, 柳卸林. 突破性技术从何而来?——一个文献评述[J]. 科学学研究,2011,29(9):1281-1290.
[7] DESS G G, BEARD D W. Dimensions of organizational task environments[J]. Administrative science quarterly, 1984, 29(1):52-73.
[8] KOSHLAND D E. The cha-cha-cha theory of scientific discovery[J]. Science, 2007, 317(5839):761-762.
[9] TUSHMAN M L, ANDERSON P. Technological discontinuities and organizational environments[J]. Administrative science quarterly, 1986, 31(3):439-465.
[10] KOTELNIKOV V. Radical innovation versus incremental innovation[M]. Boston:Harvard Business School Press, 2000.
[11] DOYLE J F. Radical innovation:how mature companies can outsmart upstarts[J]. Research-technology management, 2000, 43(10):706-707.
[12] ZHOU K Z, YIM C K, TSE D K. The effects of strategic orientations on technology-and market-based breakthrough innovations[J]. Journal of marketing, 2005, 69(2):42-60.
[13] CHANDY R K, TELLIS G J. Organizing for radical product innovation:the overlooked role of willingness to cannibalize[J]. Journal of marketing research, 1998, 35(4):474-487.
[14] 付玉秀, 张洪石. 突破性创新:概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3):73-83.
[15] SCHOENMAKERS W, DUYSTERS G. The technological origins of radical inventions[J]. Research policy, 2010, 39(8):1051-1059.
[16] DAHLIN K B, BEHRENS D M. When is an invention really radical?:defining and measuring technological radicalness[J]. Research policy, 2005, 34(5):717-737.
[17] 张金柱. 利用被引科学知识的突变识别突破性创新[M]. 北京:科学出版社, 2017.
[18] SMALL H. Referencing as cooperation or competition[M]. Berlin:Walter de Gruyter, 2016.
[19] YOON J, KIM K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1):213-228.
[20] SOOD A, TELLIS G J. Technological evolution and radical innovation[J]. Journal of marketing, 2005, 69(3):152-168.
[21] ANDERSON P, TUSHMAN M L. Technological discontinuities and dominant designs:a cyclical model of technological change[J]. Administrative science quarterly, 1990, 35(4):604-633.
[22] TELLIS G J. Disruptive technology or visionary leadership?[J]. Journal of product innovation management, 2006, 23(1):34-38.
[23] KUHN T S. The structure of scientific revolution[M]. Chicago:University of Chicago Press, 1999.
[24] 李勇, 安新颖, 赵迎光, 等. 结合知识组织体系的突发主题监测研究[J]. 情报理论与实践, 2013, 36(5):120-123.
[25] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data mining & knowledge discovery, 2003, 7(4):373-397.
[26] 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3):259-266.
[27] 王莉亚. 基于离群数据的主题演化研究[D]. 北京:中国科学院研究生院, 2012.
[28] ARTHUR W B. The structure of invention[J]. Research policy, 2007, 36(2):274-287.
[29] ARTHUR W B. The nature of technology:what it is and how it evolves[M]. New York:Free Press, 2009.
[30] FUNK R J, OWEN-SMISH J. A dynamic network measure of technological change[J]. Management Science, 2016, 63(3):587-900.
[31] CHEN C. Turning points:the nature of creativity[J]. Nature of creativity contemporary psychological perspectives, 2011, 18(1):87-98.
[32] CHEN C, CHEN Y, HOROWITZ M, et al. Towards an explanatory and computational theory of scientific discovery[J]. Journal of informetrics, 2009, 3(3):191-209.
[33] CAMPANARIO J M. Rejecting and resisting Nobel class discoveries:accounts by Nobel laureates[J]. Scientometrics, 2009, 81(2):549-565.
[34] FANG H. An explanation of resisted discoveries based on construal-level theory[J]. Science & engineering ethics, 2015, 21(1):41-50.
[35] RAAN A F J V. Sleeping beauties in science[J]. Scientometrics, 2004, 59(3):467-472.
[36] PALOMERAS N. Sleeping patents:any reason to wake up?[J]. Iese research papers, 2003, 20(35):D506.
[37] 杜建. "睡美人"文献的识别方法与唤醒机制研究[D]. 南京:南京大学,2017.
[38] AVRAMESCU A. Actuality and obsolescence of scientific literature[J]. Journal of the American Society for Information Science & Technology, 2010, 30(5):296-303.
[39] 李江, 姜明利, 李玥婷. 引文曲线的分析框架研究——以诺贝尔奖得主的引文曲线为例[J]. 中国图书馆学报, 2014, 40(2):41-49.
[40] 李柏洲, 赵健宇, 苏屹. 基于能级跃迁的组织学习-知识创造过程动态模型研究[J]. 科学学研究,2013,31(6):913-9225.
[41] 张立超, 刘怡君. 技术轨道的跃迁与技术创新的演化发展[J]. 科学学研究,2015,33(1):137-145.
[42] 郭涵宁. 多元科学指标视角下的新兴研究领域识别探索[D]. 大连:大连理工大学,2013.
[43] TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden:guaranteeing well-connected communities[J]. Scientific reports, 2019, 9(1):5233.
[44] 生物谷.[盘点]再生医学中干细胞和新材料的研究和应用(一)[EB/OL].[2019-09-16]. https://meeting.bioon.com/2018StemCells/news-detail/b04d4462ec057124.
[45] GUYETTE J P, CHAREST J M, MILLS R W, et al. Bioengineering human myocardium on native extracellular matrix[J]. Circulation research, 2016, 118(1):56-72.
[46] ClinicalTrials.gov[EB/OL].[2019-09-16]. https://clinicaltrials.gov/ct2/results?cond=stem+cell+cord+injury&term=&cntry=&state=&city=&dist=.
[47] CURTIS E, MARTIN J R, GABEL B, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord Injury[J]. Cell stem cell, 2018, 22(6):941-950.
[48] HIROMI K, KEN K, ADLER A F, et al. Generation and post-injury integration of human spinal cord neural stem cells[J]. Nature methods, 2018, 15(9):723-731.
[49] SULLIVAN W J, MULLEN P J, SCHMID EW, et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization[J]. Cell, 2018, 175(1):117-132.
[50] 国际肝病. APASL2019焦点丨王福生院士:干细胞治疗肝硬化和肝衰竭——进展与研究热点[EB/OL].[2019-09-16]. http://www.ihepa.com:8088/default/htmlDocument/2019-02-22/detail_16360.html.
[51] 王华. 复发/难治性霍奇金淋巴瘤自体造血干细胞移植前苯达莫斯汀、吉西他滨、长春瑞滨作为挽救化疗方案较好[EB/OL].[2019-09-16]. https://www.bjcancer.org/Mobile/Article/Index/4091.
[52] 闵超, DING Y, 李江, 等. 单篇论著的引文扩散[J]. 情报学报,2018,37(04):341-350.
[53] 优竹网. 趋势丨37个干细胞临床项目通过国家备案,治疗疾病范围极广(附全目录)[EB/OL].[2019-09-16]. http://www.sohu.com/a/317270049_827862.
[54] 亿欧. 干细胞治疗研究进展和产业分析[EB/OL].[2019-09-16]. https://www.iyiou.com/p/95934.html. |