[1] 央视新闻.中国发明专利申请量连续8年居世界首位[EB/OL].[2019-08-02].http://dy.163.com/v2/article/detail/EGM6VQS60511A3UP.html.
[2] 国家知识产权局.国内专利申请年度状况[EB/OL].[2019-08-02].http://www.cnipa.gov.cn/tjxx/jianbao/year2018/a/a3.html.
[3] 田创,赵亚娟.一种基于相似度的专利与产业类目映射模型——以《国际专利分类》与《国民经济行业分类》为例[J].图书情报工作,2016,60(20):123-131.
[4] LAI S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the twenty-ninth AAAI conference on artificial intelligence. Austin:AAAI, 2015:2267-2273.
[5] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 conference of the North American Chapter of the Association for Computational Linguistics:human language technologies. San Diego:NAACL, 2016:1480-1489.
[6] ZHANG X, ZHAO J, LECUN Y, et al. Character-level convolutional networks for text classification[C]//Advances in neural information processing Systems. Montreal:Neural information processing systems foundation, 2015:649-657.
[7] CHEN Y L, CHANG Y C. A three-phase method for patent classification[J]. Information processing and management, 2012, 48(6):1017-1030.
[8] FALL C J, TORCSVARI A, BENZINEB K, et al. Automated categorization in the international patent classification[C]//ACM SIGIR forum. Toronto:Association for Computing Machinery, 2003, 37(1):10-25.
[9] TRAPPEY A J C, HSU F C, TRAPPEY C V, et al. Development of a patent document classification and search platform using a back-propagation network[J]. Expert systems with applications, 2006, 31(4):755-765.
[10] HODREA I B, BOT R I, WANKA G. The Rose-Gurewitz-Fox approach applied for patents classification[J]. European journal of operational research, 2006, 173(3):815-826.
[11] KRIER M, FRANCESCO Z. Automatic categorisation applications at the European patent office[J]. World patent information, 2002, 24(3):187-196.
[12] KOSTER C H A, SEUTTER M, BENEY J. Multi-Classification of patent applications with Winnow[C]//International Andrei Ershov memorial conference on perspectives of system informatics. Berlin:Springer Berlin Heidelberg, 2003:546-555.
[13] IWAYAMA M, FUJII A,KANDO N. Overview of classification subtask at NTCIR-5 patent retrieval task[C]//Proceedings of NTCIR-5 workshop meeting. Tokyo:NTCIR, 2005.
[14] KIM J H, CHOI K S. Patent document categorization based on semantic structural information[J]. Information processing and management, 2007, 43(5):1200-1215.
[15] HE C, LOH H T. Grouping of TRIZ inventive principles to facilitate automatic patent classification[J]. Expert systems with applications, 2008, 34(1):788-795.
[16] HE C, LOH H T. Pattern-oriented associative rule-based patent classification[J]. Expert systems with applications, 2010, 37(3):2395-2404.
[17] 胡正银, 方曙, 文奕,等. 面向TRIZ的专利自动分类研究[J]. 现代图书情报技术, 2015, 31(1):66-74.
[18] 翟继强, 王克奇. 依据TRIZ发明原理的中文专利自动分类[J]. 哈尔滨理工大学学报, 2013, 18(3).
[19] 刘龙繁,李彦,侯超异,等.基于功能基的专利信息挖掘与自动分类实验研究[J].四川大学学报(工程科学版),2016,48(5):105-113.
[20] ZHANG X Y. Interactive patent classification based on multi-classifier fusion and active learning[J]. Neurocomputing, 2014, 127:200-205.
[21] CHANG S B, LAI K K, CHANG S M. Exploring technology diffusion and classification of business methods:using the Patent Citation Network[J]. Technological forecasting and social change, 2009, 76(1):107-117.
[22] LAI K K, WU S J. Using the Patent Co-Citation approach to establish a new patent classification system[J]. Information processing and management, 2005, 41(2):313-330.
[23] 李程雄,丁月华,文贵华.SVM-KNN组合改进算法在专利文本分类中的应用[J].计算机工程与应用,2006(20):193-195,212.
[24] 贾杉杉,刘畅,孙连英,等.基于多特征多分类器集成的专利自动分类研究[J].数据分析与知识发现,2017,1(8):76-84.
[25] VERBERNE S and D'HONDT E. Patent classification experiments with the linguistic classification system LCS in CLEF-IP 2011[C]//CLEF 2011 working notes. Amsterdam:CLEF, 2011.
[26] STUTZKI J, MATTHIAS S. Geodata supported classification of patent applications[C]//Proceedings of the third international ACM SIGMOD workshop on managing and mining enriched geo-spatial data. San Francisco:Association for Computing Machinery, 2016:1-6.
[27] LIM S, KWON Y J. IPC multi-label classification based on the field functionality of patent documents[C]//SIGIR Forum. Gold Coast:Association for Computing Machinery, 2016:677-691.
[28] 马双刚. 基于深度学习理论与方法的中文专利文本自动分类研究[D]. 苏州:江苏大学,2016.
[29] 胡杰,李少波,于丽娅,等.基于卷积神经网络与随机森林算法的专利文本分类模型[J].科学技术与工程,2018,18(6):268-272.
[30] 马建红, 王瑞杨, 姚爽,等. 基于深度学习的专利分类方法[J]. 计算机工程, 2018, 44(10):215-220.
[31] LI S B, HU J, CUI Y X, et al. DeepPatent:Patent classification with convolutional neural networks and word embedding[J]. Scientometrics, 2018, 117(2):721-744.
[32] 肖立中,王广仲,刘源,等. 安全领域专利文本的分类方法[P].中国:109033402A.2018-12-18.
[33] KIM Y. Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:EMNLP, 2014:1746-1751.
[34] CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder——decoder for statistical machine translation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Doha:EMNLP, 2014:1724-1734.
[35] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[C]//NIPS 2014 deep learning and representation learning workshop. arXiv:1412.3555. Montreal:NIPS, 2014.
[36] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//arXiv:1706.03762. Long Beach:NIPS, 2017. |