[1] KEJRIWAL M. Domain-specific knowledge graph construction[M]. Berlin:Springer, 2019.
[2] 孙雨生,常凯月,朱礼军. 大规模知识图谱及其应用研究[J]. 情报理论与实践, 2018, 41(11):138-143.
[3] KROMPAβ D, BAIER S, TRESP V. Type-constrained representation learning in knowledge graphs[C]//Proceedings of international Semantic Web conference. Berlin:Springer, 2015:640-655.
[4] FAN M, ZHOU Q, ZHENG T F, et al. Distributed representation learning for knowledge graphs with entity descriptions[J]. Pattern recognition letters, 2017, 93(7):31-37.
[5] 复旦大学知识工场实验室. 中文通用百科知识图谱(CN-DBpedia)[EB/OL].[2020-07-21]. http://openkg.cn/dataset/cndbpedia.
[6] NGUYEN D Q, SIRTS K, QU L, et al. Neighborhood mixture model for knowledge base completion[C]//Proceedings of the 20th SIGNLL conference on computational natural language learning. Stroudsburg:ACL Press, 2016:40-50.
[7] 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
[8] 刘知远,孙茂松,林衍凯,等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261.
[9] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of advances in neural information processing systems. San Diego:Neural Information Processing Systems Foundation, 2013:2787-2795.
[10] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2014:1112-1119.
[11] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 28th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2015:2181-2187.
[12] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd annual meeting of the ACL and the 7th international joint conference on NLP. Stroudsburg:ACL Press, 2015:687-696.
[13] 聂斌玲. 基于图结构信息的知识表示学习方法研究[D]. 杭州:浙江大学, 2019.
[14] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th international conference on machine learning. New York:ACM Press, 2011:809-816.
[15] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2020-08-16]. https://arxiv.org/pdf/1412.6575.
[16] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd international conference on machine learning. New York:ACM Press, 2016:2071-2080.
[17] LAO N, MITCHELL T,COHEN W W. Random walk inference and learning in a large scale knowledge base[C]//Proceedings of the 2011 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2011:529-539.
[18] 刘峤,韩明皓,江浏祎,等. 基于双层随机游走的关系推理算法[J]. 计算机学报, 2017, 40(6):1275-1290.
[19] XU J, CHEN K, QIU X, et al. Knowledge graph representation with jointly structural and textual encoding[C]//Proceedings of the 26th international joint conference on artificial intelligence. San Rafael:Morgan & Claypool Publishers, 2017:1318-1324.
[20] LONG T, LOWE R, CHEUNG J C, et al. Leveraging lexical resources for learning entity embeddings in multi-relational data[EB/OL].[2020-08-24]. https://arxiv.org/pdf/1605.05416.
[21] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d knowledge graph embeddings[C]//Proceedings of the 32th AAAI conference on artificial intelligence. Palo Alto:AAAI Press, 2018:1811-1818.
[22] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2020-05-22]. https://arxiv.org/pdf/1207.0580.
[23] SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 joint conference on EMNLP and computational natural language learning. Stroudsburg:ACL Press, 2012:455-465.
[24] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2014:1746-1751.
[25] ADNAN WA, YAAKOB M, ANAS R, et al. Artificial neural network for software reliability assessment[C]//Proceedings of intelligent systems and technologies for the new millennium. Piscataway:IEEE, 2000:446-451.
[26] TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd workshop on continuous vector space models and their compositionality. Stroudsburg:ACL Press, 2015:57-66.
[27] Microsoft. FB15K-237 knowledge base completion dataset[EB/OL].[2020-08-10]. https://www.microsoft.com/en-us/download/details.aspx?id=52312.
[28] BISONG E. Building machine learning and deep learning models on google cloud platform[M]. Ottawa:Apress, 2019.
[29] HAN X, CAO S, LV X, et al. Openke:an open toolkit for knowledge embedding[C]//Proceedings of the 2018 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2018:139-144.
[30] 林泽斐,欧石燕. 基于在线百科的大规模人物社会网络抽取与分析[J]. 中国图书馆学报, 2019, 45(6):100-118. |