[1] 欧阳剑.面向数字人文研究的大规模古籍文本可视化分析与挖掘[J].中国图书馆学报,2016,42(2):66-80.
[2] 谢韬.基于古文学的命名实体识别的研究与实现[D].北京:北京邮电大学,2018.
[3] CHERRY C, GUO H. The unreasonable effectiveness of word representations for twitter named entity recognition[C]//Proceedings of the 2015 conference of the North American chapter of the Association for Computational Linguistics:human language technologies. Denver:Association for Computational Linguistics,2015:735-745.
[4] PENG N, DREDZE M. Improving named entity recognition for chinese social media with word segmentation representation learning[J]. arXiv preprint arXiv:1603.007862016:149-155
[5] LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neural architectures for named entity recognition[J]. arXiv preprint arXiv:1603.013602016:260-270.
[6] DONG X,QIAN L,GUAN Y, et al.A multiclass classification method based on deep learning for named entity recognition in electronic medical records[C]//2016 New York scientific data summit. New York:IEEE, 2016:1-10.
[7] WANG G,CAI Y,GE F. Using hybrid neural network to address Chinese named entity recognition[C]//IEEE 3rd International conference on cloud computing and intelligence systems. Shenzhen:IEEE, 2015:433-438.
[8] 刘玉娇,琚生根,李若晨,等.基于深度学习的中文微博命名实体识别[J].四川大学学报(工程科学版),2016,48(S2):142-146.
[9] 朱娜娜,景东,薛涵.基于深度神经网络的微博图书名识别研究[J].图书情报工作,2016,60(4):102-106,141.
[10] 陈佳浩.基于深度学习的在线健康文献食材命名实体识别[D].广州:华南理工大学,2017.
[11] 沈思,朱丹浩.基于深度学习的中文地名识别研究[J].北京理工大学学报,2017,37(11):1150-1155.
[12] 朱丹浩,杨蕾,王东波.基于深度学习的中文机构名识别研究——一种汉字级别的循环神经网络方法[J].现代图书情报技术,2016(12):36-43.
[13] BENGIO Y, SIMARD P, FRASONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5(2):157-166.
[14] 周青宇.基于深度学习的自然语言句法分析研究[D].哈尔滨:哈尔滨工业大学,2016.
[15] 杨培,杨志豪,罗凌,等.基于注意机制的化学药物命名实体识别[J].计算机研究与发展,2018,55(7):1548-1556.
[16] 章成志,苏新宁.基于条件随机场的自动标引模型研究[J].中国图书馆学报,2008,34(5):89-94.
[17] 张海楠,伍大勇,刘悦,等.基于深度神经网络的中文命名实体识别[J].中文信息学报,2017,31(4):28-35.
[18] 唐敏.基于深度学习的中文实体关系抽取方法研究[D].成都:西南交通大学,2018. |