图书情报工作 ›› 2021, Vol. 65 ›› Issue (8): 42-50.DOI: 10.13266/j.issn.0252-3116.2021.08.005

• 情报研究 • 上一篇    下一篇

全球OA科技期刊APC监测与异常预警模型研究

芮啸1, 赵展一1,2, 王昉1, 陈雪飞1, 黄金霞1,2   

  1. 1 中国科学院文献情报中心 北京 100190;
    2 中国科学院大学经济管理学院 北京 100190
  • 收稿日期:2020-11-09 修回日期:2021-02-07 出版日期:2021-04-20 发布日期:2021-06-02
  • 通讯作者: 黄金霞(ORCID:0000-0001-8705-0067),研究馆员,博士,通讯作者,E-mail:huangjx@mail.las.ac.cn
  • 作者简介:芮啸(ORCID:0000-0003-4042-4310),馆员,硕士;赵展一(ORCID:0000-0001-8116-9139),博士研究生;王昉(ORCID:0000-0002-1069-1541),副研究馆员,硕士;陈雪飞(ORCID:0000-0003-4945-3695),馆员,硕士。
  • 基金资助:
    本文系国家社会科学基金项目"全球OA科技期刊出版大数据监测模型研究"(项目编号:18BTQ059)研究成果之一。

Research on APC Monitoring and Abnormal Warning Model of Global OA Sci-Tech Journals

Rui Xiao1, Zhao Zhanyi1,2, Wang Fang1, Chen Xuefei1, Huang Jinxia1,2   

  1. 1 National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190
  • Received:2020-11-09 Revised:2021-02-07 Online:2021-04-20 Published:2021-06-02

摘要: [目的/意义] 及时掌握全球OA科技期刊APC发展态势与异常情况,有利于避免国内科研经费流失,辅助决策,为国内确定面向开放获取和开放科学的发展路径提供参考。[方法/过程] 使用最小二乘法拟合OA期刊的APC单价和影响力指数之间的函数关系,并设置95%的置信区间以识别溢价期刊、非溢价期刊,基于此原理建立全球OA科技期刊APC监测与异常预警模型。[结果/结论] 该模型包括自动采集、监测分析、异常预警模块,以中国科学院某物理学领域研究所发文的OA期刊数据代入模型计算,发现溢价期刊占比43.5%,有4.46%的异常APC需要预警,但90%的论文发表在了性价比较高的非溢价期刊上,并且非溢价期刊均不在Beall's List名单中,溢价期刊分类符合GoOA和DOAJ的收录情况,验证了模型的有效性和可靠性。

关键词: OA期刊, 论文处理费用, 溢价期刊, 异常预警模型, 开放科学

Abstract: [Purpose/significance] Grasping the development and abnormal situation of global OA Sci-Tech journals' APC in time is helpful to avoid the loss of domestic research funding, assist decision-making, and provide a reference for China to determine the development path for open access and open science.[Method/process] This paper used the least square method to fit the functional relationship between the APC unit price and influence index of OA journals, and set a 95% confidence interval to identify premium journals and non-premium journals. Based on this principle, a global OA Sci-Tech journals' APC monitoring and anomaly early warning model was established.[Result/conclusion] The model includes automatic acquisition, monitoring analysis, and anomaly early warning modules. Take OA journals data published by an institute of physics in the Chinese Academy of Sciences as an example, it was found that premium journals accounted for 43.5%, and 4.46% of abnormal APCs required early warning. However, 90% of the papers were published in non-premium journals with high cost performance, and non-premium journals were not in the Beall's List, premium journal classification conforms to the inclusion of GoOA and DOAJ,which verified the validity and reliability of the model.

Key words: Open Access journals, article processing charges, premium journals, abnormal early warning model, open science

中图分类号: