[1] ALTUNTAS S, DERELI T, KUSIAK A. Forecasting technology success based on patent data[J]. Technological forecasting and social change, 2015, 96(7):202-214. [2] PARK I, PARK G, YOON B, et al. Exploring promising technology in ICT sector using patent network and promising index based on patent information[J]. ETRI journal, 2016, 38(2):405-415. [3] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127(2):291-303. [4] LIU X, PORTER A L. A 3-dimensional analysis for evaluating technology emergence indicators[J]. Scientometrics, 2020, 124(1):27-55. [5] 江娴, 魏凤. 基于专利分析的共性技术识别研究框架[J]. 情报杂志, 2015, 34(12):79-84. [6] 杨武, 杨大飞. 基于专利数据的产业核心技术识别研究——以5G移动通信产业为例[J]. 情报杂志, 2019, 38(3):39-45,52. [7] 宋欣娜, 郭颖, 席笑文. 基于专利文献的多指标新兴技术识别研究[J]. 情报杂志, 2020, 39(6):76-81,88. [8] CHO T S, SHIH H Y. Patent citation network analysis of core and emerging technologies in Taiwan:1997-2008[J]. Scientometrics, 2011, 89(3):795-811. [9] HO M H C, LIN V H, LIU J S. Exploring knowledge diffusion among nations:A study of core technologies in fuel cells[J]. Scientometrics, 2014, 100(1):149-171. [10] KUUSI O, MEYER M. Anticipating technological breakthroughs:using bibliographic coupling to explore the nanotubes paradigm[J]. Scientometrics, 2007, 70(3):759-777. [11] YOU H, LI M, HIPEL K W, et al. Development trend forecasting for coherent light generator technology based on patent citation network analysis[J]. Scientometrics, 2017, 111(1):297-315. [12] 李蓓, 陈向东. 基于专利引用耦合聚类的纳米领域新兴技术识别[J]. 情报杂志, 2015, 34(5):35-40. [13] 杨艳萍, 董瑜, 韩涛. 基于专利共被引聚类和组合分析的产业关键技术识别方法研究——以作物育种技术为例[J]. 图书情报工作, 2016, 60(19):143-148,124. [14] CHEN H, ZHANG G, ZHU D, et al. Topic-based technological forecasting based on patent data:a case study of Australian patents from 2000 to 2014[J]. Technological forecasting and social change, 2017, 119(6):39-52. [15] YANG C, ZHU D, WANG X, et al. Requirement-oriented core technological components' identification based on SAO analysis[J]. Scientometrics, 2017, 112(3):1229-1248. [16] ZHOU Y, DONG F, LIU Y, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1):1-29. [17] 李欣, 王静静, 杨梓, 等. 基于SAO结构语义分析的新兴技术识别研究[J]. 情报杂志, 2016, 35(3):80-84. [18] 周源, 刘宇飞, 薛澜. 一种基于机器学习的新兴技术识别方法:以机器人技术为例[J]. 情报学报, 2018, 37(9):939-955. [19] 陈伟, 林超然, 孔令凯,等. 基于专利文献挖掘的关键共性技术识别研究[J]. 情报理论与实践, 2020, 43(2):92-99. [20] DEVLIN J, CHANG M W, LEE K, et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, 2018, arXiv:1810.04805. [21] ASGARI-CHENAGHLU M, FEIZI-DERAKHSHI M R, FARZINVASH L, et al. TopicBERT:a cognitive approach for topic detection from multimodal post stream using BERT and memory-graph[J]. Chaos, solitons & fractals, 2021, 151(10):111274. [22] THOMPSON L, MIMNO D. Topic modeling with contextualized word representation clusters[J]. arXiv preprint, 2020, arXiv:2010.12626. [23] ABUZAYED A, AL-KHALIFA H. BERT for Arabic topic modeling:An experimental study on BERTopic technique[J]. Procedia computer science, 2021, 189(11):191-194. [24] 付静,龚永罡,廉小亲,等.基于BERT-LDA的新闻短文本分类方法[J].信息技术与信息化,2021(2):127-129. [25] 庄穆妮,李勇,谭旭,等.基于BERT-LDA模型的新冠肺炎疫情网络舆情演化仿真[J].系统仿真学报,2021,33(1):24-36. [26] 李越,毛存礼,余正涛,等.融合主题及上下文特征的汉缅双语词汇抽取方法[J].小型微型计算机系统,2021,42(1):91-95. [27] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. The journal of machine learning research, 2003, 3(1):993-1022. [28] MCINNES L, HEALY J, MELVILLE J. Umap:uniform manifold approximation and projection for dimension reduction[J]. arXiv preprint, 2018, arXiv:1802.03426. |