[1] 黄水清,王东波. 古文信息处理研究的现状及趋势[J].图书情报工作,2017,61(12):43-49. [2] SAMPO PYYSALO,TOMOKO OHTA,MAKOTO MIWA,et al. Event extraction across multiple levels of biological organization[J]. Bioinformatics, 2012, 28(18):i575-i581. [3] 黄佳艳. 面向金融新闻文本的事件识别与抽取[D].南京:东南大学,2019. [4] 丁效,宋凡,秦兵,刘挺.音乐领域典型事件抽取方法研究[J].中文信息学报,2011,25(2):15-20. [5] 张海涛,李佳玮,刘伟利,等.重大突发事件事理图谱构建研究[J].图书情报工作,2021,65(18):133-140. [6] BUYKO E, FACSSLCR E, WCRMTCRJ, et al. Event extraction from trimmed dependency graphs[C]//Proceedings of the workshop on current trends in biomedical natural language processing:shared task. Oregon:Association for Computational Linguistics, 2009:19-27. [7] VLACHOS A, BUTTERY P, SCAGHDHA D O, et al. Biomedical event extraction without training data[C]//Proceedings of the workshop on current trends in biomedical natural language processing:shared task. Oregon:Association for Computational Linguistics, 2009:7-10. [8] 付剑锋. 面向事件的知识处理研究[D].上海:上海大学, 2010. [9] MINH Q L, TRUONG S N, BAO Q H. A pattern approach for biomedical event annotation[C]//Proceedings of the BioNLP shared task 2011 workshop. Oregon:Association for Computational Linguistics, 2011:199-150. [10] 张建海. 基于深度学习的生物医学事件抽取研究[D].大连:大连理工大学,2016. [11] COHCN K B, VCRSPOOR K, JOHNSON H L, et al. High-precision biological event extraction with a concept recognizer[C]//Proceedings of the workshop on current trends in biomedical natural language processing:shared task. Oregon:Association for Computational Linguistics, 2009:50-58. [12] BJORNE J, HEIMONEN J, UINTCR F, et al. Extracting complex biological events with rich graph-based feature sets[C]//Proceedings of the workshop on current trends in biomedical natural language processing:shared task. Oregon:Association for Computational Linguistics,2009:10-18. [13] 陈箫箫, 刘波. 微博中的开放域事件抽取[J].计算机应用与软件,2016,33(8):18-22,109. [14] 景悦诚, 黄征. 基于语言特征的舆情事件抽取[J].信息安全与通信保密,2015, 256(4):96-100. [15] VLACHOS A, CRAVEN M. Biomedical event extraction from abstracts and full of papers using search based structured prediction[J]. BMC bio-informatics. 2012, 13 (Suppl 11):S5. [16] 邓三鸿,胡昊天,王昊,等.古文自动处理研究现状与新时代发展趋势展望[J].科技情报研究,2021,3(1):1-20. [17] 邱冰,皇甫娟.基于中文信息处理的古代汉语分词研究[J].微计算机信息,2008,24 (24):100-102. [18] 徐润华, 陈小荷.一种利用注疏的《左传》分词新方法[J].中文信息学报,2012,26(2):13-17,45. [19] 王嘉灵. 以《汉书》为例的中古汉语自动分词[D].南京师范大学,2014. [20] CHEN T, ZHU W, LV X, et al. A kalman filter based human-computer interactive word segmentation system for ancient Chinese texts[M]. Chinese computational linguistics and natural language processing based on naturally annotated big data. Berlin:Springer, 2013:25-35. [21] 黄建年. 农业古籍的计算机断句标点与分词标引研究[D].南京:南京农业大学,2009. [22] 陈小荷, 冯敏萱, 徐润华, 等. 先秦文献信息处理[M].北京:世界图书出版公司北京公司, 2013. [23] 董志翘. 为中古汉语研究夯实基础——"中古汉语研究型语料库"建设琐议[J]. 燕山大学学报(哲学社会科学版), 2011, 12(01):1-6. [24] 王东波,高瑞卿,沈思,等.面向先秦典籍的历史事件基本实体构件自动识别研究[J].国家图书馆学刊,2018,27(1):65-77. [25] 刘忠宝,党建飞, 张志剑.《史记》历史事件自动抽取与事理图谱构建研究[J].图书情报工作,2020,64(11):116-124. [26] Linguistic Data Consortium. ACE (Automatic Content Extraction) Chinese Annotation Guidelines for Events[EB/OL].[2021-10-16].https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/chinese-events-guidelines-v5.5.1.pdf. [27] 纪国泰.先秦汉语词汇研究的力作——评毛远明的《左传词汇研究》[J].成都师专学报,2000(1):74-77. [28] 孙丽丽. 春秋时期词汇研究[D].济南:山东大学,2012. [29] SCHMIDT B M. Words alone:dismantling topic models in the humanities[J]. Journal of digital humanities, 2012, 2(1):49-65. [30] UNDERWOOD T. What kinds of "topics" does topic modeling actually produce[EB/OL] [2021-03-05]. http://tedunderwood.com/2012/04/01/what-kinds-oftopics-does-topic-modeling-actually-produce/. [31] 马晓雯,何琳,刘建斌,等.基于Bi-LSTM的古籍事件句触发词分类方法研究[J].农业图书情报学报,2021,33(9):27-36. [32] 喻雪寒,何琳,徐健.基于RoBERTa-CRF的古文历史事件抽取方法研究[J].数据分析与知识发现,2021,5(7):26-35. |