[1] 董小英.知识优势的理论基础与战略选择[J].北京大学学报(哲学社会科学版),2004(4):37-45. [2] YU X, LIN Q. Knowledge fusion methods: a survey[C]// Proceedings of the 2017 2nd international conference on software, multimedia and communication engineering. Colorado: DEStech Publications, 2017: 300-304. [3] 邱均平,余厚强.知识科学视角下国际知识融合研究进展与趋势[J].图书情报工作,2015,59(8):126-132,148. [4] 缑锦.知识融合中若干关键技术研究[D].杭州:浙江大学,2005. [5] 姜振寰,吴明泰,王海山,等.技术学辞典[M].沈阳:辽宁科学技术出版社,1990. [6] 杨开城,王斌.从技术的本质看教育技术的本质[J].中国电化教育,2007(9):1-4. [7] 徐敏.知识计算视角下知识融合技术的模式及方法研究[D].北京:北京大学,2019. [8] DONG X L, GABRILOVICH E, HEITZ G, et al. From data fusion to knowledge fusion[J]. arXiv preprint arXiv: 1503. 00302, 2015.[2022-09-22]. https://arxiv.org/pdf/1503.00302v1.pdf. [9] ROEMERr M J, KACPRZYNSKI G J, ORSAGH R F. Assessment of data and knowledge fusion strategies for prognostics and health management[C]//2001 IEEE aerospace conference proceedings. New York: IEEE, 2001: 2979-2988. [10] PREECE A, HUI K, GRAY A, et al. KRAFT: an agent architecture for knowledge fusion[J]. International journal of cooperative information systems, 2001, 10(1/2): 171-195. [11] TSUKASA I, TAKENAKA T, MOTOMURA Y. Customer behavior prediction system by large scale data fusion in a retail service[J]. Transactions of the Japanese Society for Artificial Intelligence, 2011, 26(6): 670-681. [12] FENG G, ZHANG J D, LIAO S S. A novel method for combining Bayesian networks, theoretical analysis, and its applications[J]. Pattern recognition, 2014, 47(5): 2057-2069. [13] 周芳,韩立岩.基于知识融合的公司失败判别方法[J].财会通讯,2015(8):61-63. [14] SAHA R K, CHANG K C. An efficient algorithm for multisensor track fusion[J]. IEEE transactions on aerospace and electronic systems, 1998, 34(1):200-210. [15] FENG G, ZHANG J D, LIAO S S. A novel method for combining Bayesian networks, theoretical analysis, and its applications[J]. Pattern recognition, 2014, 47(5): 2057-2069. [16] MARTENS D, DEBAKER M, HAESEN R, et al. Ant-based approach to the knowledge fusion problem [C]// International workshop on ant colony optimization and swarm intelligence. Berlin: Springer, 2006: 84-95. [17] 马冯.基于扩展概念格的多数据源分类知识融合问题研究[D].合肥:合肥工业大学,2006. [18] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. New York: ACM, 2014: 601-610. [19] TAI C H, CHANG C T, CHANG Y S. Hybrid knowledge fusion and inference on cloud environment [J]. Future generation computer systems, 2018, 87(1): 568-579. [20] GRUBER T R. Ontolingua: a mechanism to support portable ontologies [R]. California: Knowledge Systems Laboratory, 1992. [21] GOU J, JIANG Y, WU Y, et al. A New knowledge fusion method based on semantic rules[C]// International conference on signal processing. New York: IEEE, 2006: 1939-1942. [22] 张灵凯,于良.多源遥感数据融合研究综述[J].城市地理,2017(2):173. [23] 张孝飞,王强,韦春荣,等.医学图像融合技术研究综述[J].广西科学,2002(1):64-68. [24] KARPATHY A, LI F F. Deep visual-semantic alignments for generating image descriptions[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 9(4): 664-676. [25] CHAVEZ P S, SILDES S C, ANDERSON J A. Comparison of three different methods to merge multiresolution and multispectral data: landsat TM and SPOT panchromatic[J]. Photogrammetric engineering & remote sensing, 1991, 57(3): 295-303. [26] LI H, MANJUNATH B S, MITRA S K. Multisensor image fusion using the wavelet transform. graph[J]. Models image process, 1995, 57(3): 235-245. [27] 李琦,孙桂玲,黄翠,等.基于水声环境空间中多模态深度融合模型的目标识别方法研究[J].海洋技术学报.2019,38(6):35-45. [28] 胡郁.人工智能与语音识别技术[J].电子产品世界,2016,23(4):23-25,27. [29] BRAVO A, CASES M, QUERALT-ROSINACH N, et al. A knowledge-driven approach to extract disease-related biomarkers from the literature[R]. BioMed research international, 2014: 1-11. [30] BRAVO À, PINERO J, QUERALT-ROSINACHh N. et al. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research[J]. BMC bioinformatics, 2015, 16(1): 1-17. [31] 陈建美,林鸿飞.中文情感常识知识库的构建[J].情报学报,2009,28(4):492-498. [32] 龚安,费凡.基于多特征融合的评论文本情感分析[J].计算机技术与发展,2018(8):91-95. [33] 曾镇,吕学强,李卓.一种面向专利摘要的领域术语抽取方法[J].计算机应用与软件,2016,33(3):48-51. [34] HOBBS J R. Granularity[C] //Proceedings of the ninth intenational joint conference on artificial intelligence. Los Angeles: Morgan Kaufmann, 1985: 432-435. [35] 丁梦晓,毕强,许鹏程,等.基于用户兴趣度量的知识发现服务精准推荐[J].图书情报工作, 2019,63(3):21-29. [36] 翟东升,郭程,张杰,等.采用异常检测的技术机会识别方法研究[J].现代图书情技术,2016(10):81-90. [37] 周磊,杨威.基于加权关联规则的技术融合探测[J].情报杂志,2019,38(1):67-72. [38] 朱惠,王昊,苏新宁,等.汉语领域术语非分类关系抽取方法研究[J].情报学报,2018,37(12):1193-1203. [39] KEJRIWAL M, SZEKELY P, KNOBLOCK C. Investigative knowledge discovery for combating illicit activities[J]. IEEE intelligent systems, 2018 (1): 53-63. [40] 陆雄文.管理学大辞典[M].上海:上海辞书出版社,2013. [41] LENAT D B, PRAKASH M, SHEPTHRD M. CYC: Using common sense knowledge to overcome brittleness and knowledge acquisition bottlenecks[J]. AI magazine, 1985, 6(4): 65-65. [42] 刘建炜,燕路峰.知识表示方法比较[J].计算机系统应用,2011,20(3):242-246. [43] 黄德根,张云霞,林红梅,等.基于规则推理网络的分类模型[J].软件学报,2020,31(4):1063-1078. [44] CHEN Y W, YANG J B, XU D L, et al. Inference analysis and adaptive training for belief rule based systems[J]. Expert systems with applications, 2011, 38(10): 12845-12860. [45] YAN R, LI G, LIU B. Knowledge fusion based on DS theory and its application on expert system for software fault diagnosis[C]//2015 prognostics and system health management conference. New York: IEEE, 2015: 1-5. [46] PARTESCANO E, BROSICH A, LIPIZER M, et al. From heterogeneous marine sensors to sensor Web: (near) real-time open data access adopting OGC sensor Web enablement standards[J]. Open geospatial data, software and standards, 2017, 2(1): 1-9. [47] SHETH A, HENSON C, SAHOO S S. Semantic sensor Web[J]. IEEE Internet computing, 2008, 12(4): 78-83. [48] LI X, MA S, ZHOU X. Large-scale Chinese cross-document entity disambiguation and information fusion[C]// Advancing big data benchmarks. Berlin: Springer, 2013: 105-119. [49] BRONSELAER A, VAN Britsom D, DE T G. A framework for multiset merging[J]. Fuzzy sets and systems, 2012, 191(1): 1-20. [50] YUE L, SHI Z, HAN J, et al. Multi-factors based sentence ordering for cross-document fusion from multimodal content[J]. Neurocomputing, 2017, 253(1): 6-14. [51] WITTE R, BERGLER S. Fuzzy clustering for topic analysis and summarization of document collections[C]//Conference of the canadian society for computational studies of intelligence. Berlin: Springer, 2007: 476-488. [52] LEBANOFF L, WANG B, FENG Z, et al. Modeling endorsement for multi-document abstractive summarization[J]. arXiv preprint. arXiv: 2110. 07844, 2021. [53] 倪景秀.图像语义融合关键技术的研究[D].北京:中国矿业大学,2018. [54] SMIRNOV A V, LEVASHOVA T, SHILOV N. Knowledge fusion in context-aware decision support systems[C]// Proceedings of the international joint conference on knowledge discovery, knowledge engineering and knowledge management. Rome: KEOD, 2014: 186-194. [55] 张磊.具有模糊不确定性的应急决策知识融合方法研究[D].大连:大连理工大学,2019. [56] 张志霞, 郝纹慧. 基于知识元的突发灾害事故动态情景模型[J]. 油气储运, 2019, 38(9): 980-987, 995. [57] The RAND Corporation. Seeking examples of long-term decisions[EB/OL]. [2022-08-20]. https://www.rand.org/pardee/LongTermDecisions/seeking.html. [58] ÇALI S, BALAMAN Y. Improved decisions for marketing, supply and purchasing: mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment[J]. Computers & industrial engineering, 2019, 129(1): 315-332. [59] CHEN X, ZHANG W, XU X, et al. A public and large-scale expert information fusion method and its application: mining public opinion via sentiment analysis and measuring public dynamic reliability[J]. Information fusion, 2022, 78(1): 71-85. [60] MORGE M. The hedgehog and the fox[C]//International workshop on argumentation in multi-agent systems. Berlin: Springer, 2007: 114-131. [61] CHARBONNEAU S, FYE S, HAY J, et al. A retrospective analysis of technology forecasting [C/OL] //AIAA SPACE 2013 conference and exposition. California: American Institute of Aeronautics and Astronautics, 2013[2022-06-14]. https://doi.org/10.2514/6.2013-5519. DOI:10.2514/6.2013-5519. [62] PAGE S E. The difference: how the power of diversity creates better groups, firms, schools, and societies-new edition[M]. New Jersey: Princeton University Press, 2008[2022-06-14].https://doi.org/10.2514/6.2013-5529.DOI:10.2514/6.2013-5519. [63] HEYEOL K. Data-driven technology foresight: text analysis of emerging technologies[D]. Seoul: Seoul National University, 2018. [64] DARPA and data: a portfolio overview[EB/OL]. [2022-08-13]. https://www.nitrd.gov/nitrdgroups/images/3/31/DARPA-and-DATA.pdf. [65] MORSTATTER F, GALSTYAN A, SATYUKOV G, et al. SAGE: a hybrid geopolitical event forecasting system[C]//Proceedings of the 28th international joint conference on artificial intelligence. California: AAAI Press, 2019: 6557-6559. [66] TETLOCK P E, GARDNER D. Super forecasting: the art and science of prediction[M]. New York: Random House, 2016. |