[1] 韩伟. 20世纪中国美学"意象"理论的发展谱系及理论构建[J]. 文艺理论研究, 2014, 34(1): 204-214. [2] 陈煜斓. 近代学堂乐歌的文化与诗学阐释[J]. 中国社会科学, 2006(3): 160-170. [3] 庄众显. 浅析唐诗宋词中楼台"愁"意象的人文情怀[J]. 汉字文化, 2018(9): 16-17. [4] 姚华. 市声:范成大诗歌声音描写的新开拓[J]. 浙江学刊, 2015(1): 82-89. [5] GAO F. Negotiation of native linguistic ideology and cultural identities in English learning: a cultural schema perspective[J]. Journal of multilingual and multicultural development, 2021, 42(6): 551-564. [6] LIEBESKIND C, LIEBESKIND S. Deep learning for period classification of historical hebrew texts[J]. Journal of data mining & digital humanities, 2020,10: 1-21. [7] DOU J, QIN J, JIN Z, et al. Knowledge graph based on domain ontology and natural language processing technology for Chinese intangible cultural heritage[J]. Journal of visual languages & computing, 2018, 48: 19-28. [8] FAN T, WANG H. Research of Chinese intangible cultural heritage knowledge graph construction and attribute value extraction with graph attention network[J]. Information processing & management, 2022, 59(1): 102753. [9] 佟秋华.论古典诗歌意象的语用功能[J].学术交流,2020(6):183-190. [10] 胡韧奋, 诸雨辰. 唐诗题材自动分类研究[J]. 北京大学学报(自然科学版), 2015, 51(2): 262-268. [11] AL-SHAIBANIM S, ALYAFEAI Z, AHMAD I. Meter classification of Arabic poems using deep bidirectional recurrent neural networks[J]. Pattern recognition letters, 2020, 136: 1-7. [12] AHMAD S, ASGHAR M Z, ALOTAIBI F M, et al. Classification of poetry text into the emotional states using deep learning technique[J]. IEEE access, 2020, 8: 73865-73878. [13] 崔竞烽, 郑德俊, 王东波, 等. 基于深度学习模型的菊花古典诗词命名实体识别[J]. 情报理论与实践, 2020, 43(11): 150-155. [14] 张卫, 王昊, 邓三鸿, 等. 面向数字人文的古诗文本情感术语抽取与应用研究[J]. 中国图书馆学报, 2021, 47(4): 113-131. [15] 孙蓉蓉. 论古代文论中情感论的流变[J]. 文艺理论研究, 1992(1): 35-43. [16] 和秀梅, 张夏妮, 张积家, 等. 文化图式影响亲属词语义加工中的空间隐喻——来自汉族人和摩梭人的证据[J]. 心理学报, 2015, 47(5): 584-599. [17] 陈清泚. 论证研究的认知社会学路径[J]. 自然辩证法研究, 2020, 36(2): 103-108. [18] 刘娟华. 图式理论视角下古诗英译意象传递研究——以杜牧《泊秦淮》两个英译本为例[J]. 山东理工大学学报(社会科学版), 2011, 27(5): 65-68. [19] 王向前,张宝隆,李慧宗.本体研究综述[J].情报杂志,2016,35(6):163-170. [20] 庄传志, 靳小龙, 朱伟建, 等. 基于深度学习的关系抽取研究综述[J]. 中文信息学报, 2019, 33(12): 1-18. [21] LIU W, YU B, ZHANG C, et al. Chinese named entity recognition based on rules and conditional random field[C]// Proceedings of the 2018 2nd international conference on computer science and artificial intelligence. Shenzhen: ACM, 2018: 268-272. [22] AKBIK A, BLYTHE D, VOLLGRAF R. Contextual string embeddings for sequence labeling[C]// Proceedings of the 27th international conference on computational linguistics. Santa Fe: Association for Computational Linguistics, 2018: 1638-1649. [23] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th annual meeting of the Association for Computational Linguistics (volume 2: Short papers). Berlin: Association for Computational Linguistics, 2016: 207-212. [24] CHEN Z, GUO C. A pattern-first pipeline approach for entity and relation extraction[J]. Neurocomputing, 2022, 494: 182-191. [25] MIWA M, SASAKI Y. Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1858-1869. [26] DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[Preprint]. arXiv:1810.04805 [cs], 2019. [27] 王星予, 吕学强, 游新冬. KBLCC:融合实体关键字特征的医疗领域实体分类方法[J]. 小型微型计算机系统, 2022, 43(1): 27-34. [28] WU S, HE Y. Enriching pre-trained language model with entity information for relation classification[Preprint]. arXiv:1905.08284 [cs], 2019. [29] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP. Suntec, Singapore: Association for Computational Linguistics, 2009: 1003. [30] WEI J, HE J, CHEN K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert systems with applications, 2017, 69: 29-39. [31] HONG L, HOU W, WU Z, et al. A cooperative crowdsourcing framework for knowledge extraction in digital humanities-cases on Tang poetry[J]. Aslib journal of information management, 2020, 72(2):243-261. [32] 柳建钰, 周晓文. 计算机辅助古籍版本校勘资源库建设浅议[J]. 图书馆理论与实践, 2017(3): 54-58. [33] 郗亚辉. 产品评论中领域情感词典的构建[J]. 中文信息学报, 2016, 30(5): 136-144. [34] ZHANG W, WANG H, SONG M, et al. A method of constructing a fine-grained sentiment lexicon for the humanities computing of classical Chinese poetry[EB/OL]. [2022-09-20]. https://doi.org/10.1007/s00521-022-07690-8. [35] 刘昱彤, 吴斌, 白婷. 古诗词图谱的构建及分析研究[J]. 计算机研究与发展, 2020, 57(6): 1252-1268. [36] 朱惠, 王昊, 苏新宁, 等. 汉语领域术语非分类关系抽取方法研究[J]. 情报学报, 2018, 37(12): 1193-1203. [37] 李仕春. 中国语文辞书的分期问题[J]. 湖北大学学报(哲学社会科学版), 2017, 44(1): 109-115. [38] CHE W, LI Z, LIU T. LTP: a Chinese language technology platform[C]//Coling 2010: demonstrations. Beijing: Coling 2010 Organizing Committee, 2010: 13-16. [39] FRANCIS N, GREENA, GUAGLIARDO P, et al. Cypher: an evolving query language for property graphs[C]//Proceedings of the 2018 international conference on management of data. Houston: Association for Computing Machinery, 2018: 1433-1445. |