[1] CAPLAN N.The two-communities theory and knowledge utilization[J].American behavioral scientist, 1979, 22(3):459-470. [2] YIN Y, GAO J, JONES B F, et al.Coevolution of policy and science during the pandemic[J].Science, 2021, 371(6525):128-130. [3] 梁继文, 杨建林, 王伟.政策对科研选题的影响——基于政策文本量化方法的研究[J].现代情报, 2021, 41(8):109-118. [4] 薛澜.科学在公共决策中的作用——聚焦公共卫生事件中的风险研判机制[J].科学学研究, 2020(3):385-387. [5] WILLIAMS G, DÍEZ S, FIGUERAS J, et al.Translating evidence into policy during the COVID-19 pandemic:bridging science and policy (and politics)[J].Eurohealth, 2020, 26(2):29-33. [6] 齐晔, 杜迪佳, 董长贵, 等.新冠肺炎疫情早期科学研究对政府决策的影响[J].治理研究, 2020(2):21-31. [7] 张继亮.循证政策:政策证据的类型、整合与嵌入[J].社会科学, 2019(11):39-47. [8] 杨代福, 刘爽.新冠疫情应对决策中的研究证据使用:基于十个国家的定性比较分析[J].科学学研究, 2022, 40(2):278-287. [9] 任超, 杨孟辉.隧道尽头的光芒:公共卫生政策计量分析研究[J/OL].图书馆论坛[2022-10-05].http://kns.cnki.net/kcms/detail/44.1306.g2.20220804.1704.004.html. [10] Overton.Overton help center:advice and answers from the Overton team[EB/OL].[2022-10-02].http://help.overton.io/en/. [11] ZHANG S, WANG Z, CHANG R, et al.COVID-19 containment:China provides important lessons for global response[J].Frontiers of medicine, 2020, 14(2):215-219. [12] 中华人民共和国国务院新闻办公室.抗击新冠肺炎疫情的中国行动[N].人民日报, 2020-06-08(10). [13] CHENG X, TANG L, ZHOU M, et al.Coevolution of COVID-19 research and China's policies[J].Health research policy and systems, 2021, 19(1):1-16. [14] SNOW C P.Science and government[M].Cambridge:Harvard University Press, 2013. [15] MEHRA M R, DESAI S, RUSCHITZKA F, et al.RETRACTED:hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19:a multinational registry analysis[J].The lancet, 2020, 395(10240):E102. [16] LEI D, WEI C, JIAN D, et al.An interim review of lessons from the Novel Coronavirus (SARS-CoV-2) outbreak in China[J].Scientia Sinica Vitae, 2020, 50(3):247-257. [17] CARVALHO C J, FULLER M P, QUAIDOO E A, et al.A review of COVID-19-related publications and lag times during the first six months of the year 2020[J].Western journal of emergency medicine, 2021, 22(4):958-962. [18] 翟杰全.科学(研究)、公众理解与科学传播:基于新冠肺炎疫情的反思[J].科普研究, 2020, 15(2):13-18. [19] 霍朝光, 钱毅, 祁天娇.基于开放公文的新冠肺炎政策知识图谱构建与分析[J].档案学通讯, 2021(2):53-62. [20] 毛瑞彬, 朱菁, 李爱文, 等.基于自然语言处理的产业链知识图谱构建[J].情报学报, 2022, 41(3):287-299. [21] LIU Y, ZHANG J, GE Z.Construction and application of knowledge graph of government policy based on deep neural network[C]//20205th international conference on information science, computer technology and transportation.Shenyang:IEEE, 2020:709-716. [22] LI Z, DAI Y, LI X.Construction of sentimental knowledge graph of Chinese government policy comments[J].Knowledge management research & practice, 2022, 20(1):73-90. [23] WANG P, LI Z, LI Z, et al.A government policy analysis platform based on knowledge graph[C]//20192nd international conference on artificial intelligence and big data.Orlando:IEEE, 2019:208-214. [24] KANG Y, OU R, ZHANG Y, et al.PG-CODE:latent Dirichlet allocation embedded policy knowledge graph for government department coordination[J].Tsinghua science and technology, 2021, 27(4):680-691. [25] 韩娜, 马海群, 刘兴丽.基于知识图谱的政策文本协同性推理研究[J].情报科学, 2021, 39(11):180-186. [26] FLOCCO D, PALMER-TOY B, WANG R, et al.An analysis of COVID-19 knowledge graph construction and applications[C]//2021 IEEE international conference on big data.Orlando:IEEE, 2021:2631-2640. [27] YANG Y, CAO Z, ZHAO P, et al.Constructing public health evidence knowledge graph for decision-making support from COVID-19 literature of modelling study[J].Journal of safety science and resilience, 2021, 2(3):146-156. [28] BORDES A, USUNIER N, GARCIA-DURAN A, et al.Translating embeddings for modeling multi-relational data[C]//Neural information processing systems.Lake Tahoe:Curran, 2013. [29] ZHEN W, ZHANG J, FENG J, et al.Knowledge graph embedding by translating on hyperplanes[C]//National conference on artificial intelligence.Québec City:AAAI, 2014. [30] JI G, HE S, XU L, et al.Knowledge graph embedding via dynamic mapping matrix[C]//Meeting of the Association for Computational Linguistics & the international joint conference on natural language processing.Beijing:IJCNLP, 2015. [31] KAZEMI S M, POOLE D.SimplE Embedding for link prediction in knowledge graphs[C]//Proceedings of the 32nd international conference on neural information processing systems.Montreal:NIPS, 2018:4289-4300. [32] YANG B, YIH W T, HE X, et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv preprint arXiv:1412.6575, 2014. [33] TH TROUILLON O, WELBL J, et al.Complex embeddings for simple link prediction[C]//The 33rd international conference on machine learning.New York:JMLR.org, 2016. [34] PRIEM J, PIWOWAR H, ORR R.OpenAlex:A fully-open index of scholarly works, authors, venues, institutions, and concepts[J].arXiv preprint arXiv:2205.01833, 2022. [35] HAN X, CAO S, LV X, et al.Openke:an open toolkit for knowledge embedding[C]//Proceedings of the 2018 conference on empirical methods in natural language processing:system demonstrations.Brussels:Association for Computational Linguistics, 2018:139-144. [36] GARFIELD E.Letters editor validation of citation analysis[J].Journal of the American Society for Information Science, 1997, 48(10):962-964. |