图书情报工作 ›› 2014, Vol. 58 ›› Issue (19): 118-123.DOI: 10.13266/j.issn.0252-3116.2014.19.018

• 知识组织 • 上一篇    下一篇

引入众包的MOOC在线问答系统实现研究

洪亮1, 冉从敬1, 余骞2   

  1. 1. 武汉大学信息管理学院;
    2. 武汉大学计算机学院
  • 收稿日期:2014-08-07 修回日期:2014-08-26 出版日期:2014-10-05 发布日期:2014-10-05
  • 作者简介:洪亮,武汉大学信息管理学院讲师,E-mail:hong@whu.edu.cn;冉从敬,武汉大学信息管理学院副教授;余骞,武汉大学计算机学院博士研究生。
  • 基金资助:

    本文系国家自然科学基金青年基金项目”移动社会网络中基于信任关系的情境感知推荐研究”(项目编号:61303025)研究成果之一。

Research on Implementation of MOOC Online Question Answering System by Introducing Crowd Sourcing

Hong Liang1, Ran Congjing1, Yu Qian2   

  1. 1. School of Information Management, Wuhan University, Wuhan 430072;
    2. School of Computer, Wuhan University, Wuhan 430072
  • Received:2014-08-07 Revised:2014-08-26 Online:2014-10-05 Published:2014-10-05

摘要:

为了提高MOOC在线问答系统的实时性并增加激励机制,引入众包的激励机制建模——MOOC在线问答。首先设计MOOC在线问答系统流程,并对在线问答的每个阶段进行建模;在此基础上,设计高效的学生选择算法,根据学生回答问题的历史确定学生的程度,从而激励不同程度的学生参与课堂提问;最后实现MOOC在线问答系统,包括教师提问模块、学生选择模块、学生回答模块和教师评分模块。该系统已经应用于真实的MOOC课程,对教师与学生的满意度调查表明该系统能够支持实时的MOOC在线问答,可激励学生积极参与问答。

关键词: 众包, MOOC, 问答系统, 激励机制

Abstract:

To improve real-time performance and provide an incentive mechanism to MOOC online Question Answering (Q&A) system, this paper introduces incentive mechanism of crowd sourcing to modeling MOOC online Q&A. It first designs a system flow of MOOC online Q&A system, and then models each step of online Q&A; on such basis, it designs an efficient student selection algorithm, which determines the levels of students according to question answering history, so as to stimulate students with different levels to participate classroom questioning; and finally implements a MOOC online Q&A system ,including the teacher questioning module, the students selection module, the students answering module and the teacher scoring module。The Q&A system has been applied to real MOOC courses. The satisfaction survey towards teachers and students indicates this system can support real-time MOOC online question answering, and stimulate students actively participate question answering.

Key words: crowd sourcing, MOOC, question answering system, incentive mechanism

中图分类号: