[1] RILOFF E. Automatically constructing a dictionary for information extraction tasks[C]//Proceedings of the 11th national conference on artificial intelligence. Menlo Park:AAAI, 1993:811-816.
[2] KIM J T, MOLDOVAN D I. Acquisition of linguistic patterns for knowledge-based information extraction[J]. IEEE transactions on knowledge and data engineering, 1995, 7(5):713-724.
[3] RILOFF E, SHOEN J. Automatically acquiring conceptual patterns without an annotated corpus[C]//Proceedings of the 3rd workshop on very large corpora. Cambridge:Massachusetts Institute of Technology, 1995:148-161.
[4] 姜吉发. 一种事件信息抽取模式获取方法[J]. 计算机工程, 2005, 31(15):96-98.
[5] 许君宁,董萍,刘怀亮. 基于知网的中文事件抽取研究[J].情报杂志,2009,28(12):150-151,137.
[6] AHN D. The stages of event extraction[C]//Proceedings of the workshop on annotations and reasoning about time and events. Stroudsburg:Association for Computational Linguistics, 2006:1-8.
[7] SAHA S, MAJUMDER A, HASANUZZAMAN M, et al. Bio-molecular event extraction using support vector machine[C]//Proceedings of the 3rd international conference on advanced computing. Piscataway:IEEE, 2011:298-303.
[8] ZHU F, LIU Z T, YANG J L, et al. Chinese event place phrase recognition of emergency event using maximum entropy[C]//Proceedings of IEEE international conference on cloud computing and intelligence systems. Washington:IEEE Computer Society, 2011:614-618.
[9] 许旭阳,李弼程,张先飞,等.基于事件实例驱动的新闻文本事件抽取[J].计算机科学,2011,38(8):232-235.
[10] 刘振.基于网络科技信息的事件抽取研究[J].情报科学,2018,36(9):115-117,122.
[11] 吉久明,陈锦辉,李楠,等.中文事件抽取研究文献之算法效果分析[J].现代情报,2015,35(12):3-10.
[12] CHEN Y, XU L, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Stroudsburg:Association for Computational Linguistics, 2015:167-176.
[13] NGUYEN T, GRISHMAN R. Modeling skip-grams for event detection with convulutional neural networks[C]//Proceedings of the 2016 conference on empirical methods in natural language processing. Stroudsburg:Association for Computational Linguistics, 2016:886-891.
[14] FENG X C, QIN B, LIU T. A language-independent neural network for event detection[J]. Science China information sciences, 2018, 61(9):66-71.
[15] NGUYEN T H, CHO K, GRISHMAN R. Joint event extraction via recurrent neural network[C]//Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics:human language technologies. Stroudsburg:Association for Computational Linguistics, 2016:300-309.
[16] ZHAO Y, JIN X, WANG Y, et al. Document embedding enhanced event detection with hierarchical and supervised attention[C]//Proceedings of the 56th annual meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:414-419.
[17] HONG Y, ZHOU W, ZHANG J, et al. Self-regulation:employing a generative adversarial network to improve event detection[C]//Proceedings of the 56th annual meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:515-526.
[18] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 annual conference of the North American chapter of the Association for Computational Linguistics:human language technologies. Stroudsburg:Association for Computational Linguistics, 2019:4171-4186.
[19] JIN Y L, XIE J F, GUO W S, et al. LSTM-CRF neural network with gated self attention for Chinese NER[J]. IEEE access, 2019, 4(4):136694-136703.
[20] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. Computer science, 2015, 5:177-181. |