[1] 郭顺利,张向先,李中梅.面向用户信息需求的移动O2O在线评论有用性排序模型研究——以美团为例[J]. 图书情报工作, 2015, 59(23):85-93. [2] 张艳丰,李贺,彭丽徽, 侯力铁. 基于情感语义特征抽取的在线评论有用性分类算法与应用[J]. 数据分析与知识发现, 2017, 1(12):74-83. [3] 王忠群,吴东胜,蒋胜, 等. 一种基于主流特征观点对的评论可信性排序研究[J]. 数据分析与知识发现, 2017, 1(10):32-42. [4] 吴璠,王中卿,周夏冰,等. 基于文本和用户信息的在线评论质量检测[J]. 中文信息学报, 2019, 33(9):107-114, 140. [5] 祝琳琳,李贺,刘金承,等. 在线评论信息质量感知评价指标体系构建研究[EB/OL].[2020-12-12]. https://kns.cnki.net/KXReader/Detail?TIMESTAMP=637449586862656250&DBCODE=CJFQ&TABLEName=CAPJLAST&FileName=QBLL20201112002&RESULT=1&SIGN=MYZ8niwHlIVHm8g%2f8tmHWEKEjGs%3d. [6] 李健,张军,苑清敏,等. 在线商品评论对消费者效用的改进分析——基于信息质量和消费者满意度理论视角[J]. 情报科学, 2018, 36(7):137-144. [7] BEN-ABDALLAH E, BOUKADI K, HAMMAMI M. Personalized cloud service review ranking approach based on probabilistic ontology[C]//Proceedings of 22nd international conference on business information systems. Seville:Springer, 2019:50-61. [8] 姜霖, 张麒麟. 基于评论情感分析的个性化推荐策略研究——以豆瓣影评为例[J]. 情报理论与实践, 2017, 40(8):99-104. [9] CHEN L, CHEN G, WANG F. Recommender systems based on user reviews:the state of the art[J]. User modeling and user-adapted interaction, 2015, 25(2):99-154. [10] ESPARZA S G, P.O'MAHONY M, SMYTH B. Effective product recommendation using the real-time web[C]//Proceedings of the 30th SGAI international conference on innovative techniques and applications of artificial intelligence. Cambridge:Springer, 2010:5-18. [11] 耿立校,晋高杰,李亚函,等.基于改进内容过滤算法的高校图书馆文献资源个性化推荐研究[J]. 图书情报工作, 2018,62(21):112-117. [12] ZHANG W, DING G, CHEN L, et al. Generating virtual ratings from Chinese reviews to augment online recommendations[J]. ACM transactions on intelligent systems and technology, 2013, 4(1):1-17. [13] MUSAT C, LIANG Y, FALTINGS B. Recommendation using textual opinions[EB/OL].[2020-12-26]. https://www.researchgate.net/profile/Claudiu-Musat/publication/262348054_Recommendation_using_textual_opinions/links/57480c6308ae2301b0b8771f/Recommendation-using-textual-opinions.pdf. [14] 张宜浩,朱小飞,徐传运,等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6):1316-1333. [15] LIU H, HE J, WANG T, et al. Combining user preferences and user opinions for accurate recommendation[J]. Electronic commerce research and applications, 2013,12(1):14-23. [16] 张炎亮,张超,李静. 基于动态用户画像标签的KNN分类推荐算法研究[J]. 情报科学, 2020, 38(8):11-15. [17] BAO Y, FANG H, ZHANG J. TopicMF:Simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the 28th AAAI conference on artificial intelligence. Quebec:AI Access Foundation, 2014:2-8. [18] FENG S, CAO J, WANG J. et al. Recommendations based on comprehensively exploiting the latent factors hidden in items' ratings and content[EB/OL]:[2020-12-26]. https://dl.acm.org/doi/pdf/10.1145/3003728. [19] ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceeding s of the 10th ACM international conference on web search and data mining. Cambridge, UK, 2017:425-434. [20] SEO S, HUANG J, YANG H, et al. Representation learning of users and items for review rating prediction using attention-based convolutional neural network[EB/OL].[2020-12-26]. https://doogkong.github.io/2017/papers/paper8.pdf. [21] CHEN C, ZHANG M, LIU Y, MA S. Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 WWW conference on World Wide Web. Lyon, 2018:1583-1592. [22] 冯兴杰,曾云泽,崔桂颖. 基于近邻用户评论的推荐辅助网络[J]. 计算机应用研究, 2020, 37(10):2956-2960. [23] BLEI D M, NGA Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research. 2003, 3(4/5):993-1022. [24] 中文预训练模型[EB/OL].[2020-12-20]. https://github.com/Embedding/Chinese-Word-Vectors. |