[1] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843. [2] WANG Q. A bibliometric model for identifying emerging research topics[J]. Journal of the Association for Information Science and Technology, 2018, 69(2):290-304. [3] 卢小宾, 杨冠灿, 徐硕, 等. 计量与演化视角下的新兴技术识别研究进展评述[J]. 情报学报, 2020, 39(6):651-661. [4] KIM E, CHO Y, KIM W. Dynamic patterns of technological convergence in printed electronics technologies:patent citation network[J]. Scientometrics, 2014, 98(2):975-998. [5] SRINIVASAN R. Sources, characteristics and effects of emerging technologies:research opportunities in innovation[J]. Industrial marketing management, 2008, 37(6):633-640. [6] ZHOU Y, DONG F, KONG D, et al. Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies[J]. Technological forecasting and social change, 2019, 144:205-220. [7] KYEBAMBE M N, CHENG G, HUANG Y, et al. Forecasting emerging technologies:a supervised learning approach through patent analysis[J]. Technological forecasting and social change, 2017,125:236-244. [8] MIAO Z, DU J, DONG F, et al. Identifying technology evolution pathways using topic variation detection based on patent data:a case study of 3D printing[J]. Futures, 2020, 118(2):102530. [9] ZHOU X, HUANG L, PORTER A, et al. Tracing the system transformations and innovation pathways of an emerging technology:solid lipid nanoparticles[J]. Technological forecasting and social change, 2019, 146:785-794. [10] ÉRDI P, MAKOVI K, SOMOGYVÁRI Z, et al. Prediction of emerging technologies based on analysis of the U.S. patent citation network[J]. Scientometrics, 2013, 95(1):225-242. [11] JOUNG J, KIM K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological forecasting & social change, 2017, 114:281-292. [12] YOFFIE D B. Competing in the age of digital convergence[M]. Cambridge:Harvard Business School Press, 1997. [13] SPILIOPOULOU M, NTOUTSI I, THEODORIDIS Y, et al. The MONIC framework for cluster transition detection[C]//5th Hellenic data management symposium. 2006:90-99. [14] PORTER A, GARNER J, CARLEY S, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological forecasting & social change, 2019,146:628-643. [15] XU S, HAO L, YANG G, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological forecasting & social change, 2021, 162:120366. [16] KIM Y K. TrendPerceptor:a property-function based technology intelligence system for identifying technology trends from patents[J]. Expert systems with applications, 2012,39(3):2927-2938. [17] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127:291-303. [18] 黄璐, 朱一鹤, 张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4):335-341. [19] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]. Advances in neural information processing systems, 2013, 2:3111-3119. [20] HAO X, ZHANG G, MA S. Deep learning[J]. International journal of semantic computing, 2016, 10(3):417-439. [21] JIANG Z, LI L, HUANG D. An unsupervised graph based continuous word representation method for biomedical text mining[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2016, 13(4):634-642. [22] TSHITOYAN V, DAGDELEN J, WESTON L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature[J]. Nature, 2019, 571(7763):95-98. [23] DON R. SWANSON. Undiscovered public knowledge[J]. The library quarterly, 1986, 56(2):103-118. [24] MEYERS A L, HE Y, ZACHARY G, et al. The termolator:terminology recognition based on chunking, statistical and search-based scores[J]. Frontiers in research metrics & analytics, 2018, 3:19. [25] GROVER A, LESKOVEC J. Node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International conference on knowledge discovery & data mining. New York:ACM, 2016:855-864. [26] 任海英, 于立婷, 黄鲁成. 基于链接预测的科学研究机会发现方法研究[J]. 情报杂志, 2016, 35(10):53-58. [27] PENG H, KE Q, BUDAK C, et al. Neural embeddings of scholarly periodicals reveal complex disciplinary organizations[J]. Science advances, 2021, 7(17). [28] EY A, RG B. Predicting and recommending collaborations:an author-, institution-, and country-level analysis[J]. Journal of Informetrics, 2014, 8(2):295-309. [29] 航空科学基金办公室, 关于征集航空科学基金专项指南建议的通知[EB/OL].[2021-03-20].http://kyy.hfut.edu.cn/_upload/article/files/ef/5c/23178e8645c29ea9459fde3642ea/52ffe5e9-dd13-4806-ac6f-a58db67e52b3.pdf. [30] EASA A. Artificial intelligence roadmap:a human-centric approach to AI in aviation[EB/OL].[2021-03-20]. https://www.easa.europa.eu/ai. [31] 美国商务部.关键与新兴技术国家战略[EB/OL].[2021-12-04]. http://www.casisd.cn/zkcg/ydkb/kjzcyzxkb/2020kjzc/202012/202102/t20210204_5885365.html. [32] 郭婷婷. 卫星遥感AI赋能城市空间治理[J]. 北京规划建设, 2020(S1):178-180. |