情报研究

一种基于共词网络社区的科研主题演化分析框架

  • 程齐凯 ,
  • 王晓光
展开
  • 武汉大学信息管理学院
程齐凯,武汉大学信息管理学院博士研究生。

收稿日期: 2012-11-27

  修回日期: 2013-02-20

  网络出版日期: 2013-04-20

基金资助

本文系国家自然科学基金项目"基于语义共词网络演化的学科新兴趋势浮现机理与探测研究"(项目编号:71003078)和中央高校基本科研业务费专项资金资助项目(项目编号:2012104010204)研究成果之一。

A New Research Frame for Analyzing the Evolution of Research Topics Based on Co-word Network Communities

  • Cheng Qikai ,
  • Wang Xiaoguang
Expand
  • School of Information Management, Wuhan University, Wuhan 430072

Received date: 2012-11-27

  Revised date: 2013-02-20

  Online published: 2013-04-20

摘要

共词网络在一定程度上可以表示特定学科领域的知识结构。为分析主题演化过程,将网络社区的演化分为6种类型,分别为产生、消亡、分裂、合并、扩张与收缩。在此基础上,利用Z-value算法和社区相似度算法,构建一个科研主题演化分析模型。与传统的基于词频的分析思路相比,所提出的基于共词网络社区演化分析的框架不强调词频的变化,而是强调词间关系的变化,试图通过中观层面的网络社区的演化分析揭示科研主题发展规律。

本文引用格式

程齐凯 , 王晓光 . 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作, 2013 , (08) : 91 -96 . DOI: 10.7536/j.issn.0252-3116.2013.08.017

Abstract

The knowledge structure of a discipline can be expressed by a co-word network. Six types of evolution of community are recognized, which are birth, death, splitting, merging, growth, and contraction. A topic evolution analysis framework is created based on Z-value mechanism and community match mechanism. Comparing with the traditional methods, the method proposed in this paper focus on the links between words rather than the frequency of words, which is a innovation in the field of ETD from the mesoscopical network view.

参考文献

[1] Kontostathis A, Galitsky L M, Pottenger W M, et al. A survey of emerging trend detection in textual data mining[C]//Berry M.A Comprehensive Survey of Text Mining. Heidelberg: Springer-Verlag, 2003:185-224.
[2] 陈仕吉. 科学研究前沿探测方法综述[J],现代图书情报技术,2009(9):28-33.
[3] Pottenger W M, Yang Tinghao. Detecting emerging concepts in textual data mining[J]. Computational Information Retrieval, 2001,100(1): 89-105.
[4] Roy S, Gevry D, Pottenger W M. Methodologies for trend detection in textual data mining[C/OL].[2012-09-06].http://www.cse.lehigh.edu/~billp/pubs/ETDMethodologies.pdf.
[5] Le Minh-Hoang, Ho Tu-Bao, Nakamori Y. Detecting emerging trends from scientific corpora[J]. International Journal of Knowledge and Systems Sciences, 2005, 2(2): 63-69.
[6] Chen Chaomei. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3):359-377.
[7] Börner K, Chen Chaomei, Boyack K W. Visualizing knowledge domains[J].Annual Review of Information Science & Technology Cronin B. Inc./American Society for Information Science and Technology, 2003,37(1): 179-255.
[8] Wallace M L, Gingras Y, Duhon R. A new approach for detecting scientific specialties from raw cocitation networks[J]. Journal of the American Society for Information Science and Technology, 2009, 60 (2): 240-246.
[9] 殷蜀梅. 判断新兴研究趋势的技术框架研究[J]. 图书情报知识,2008(5):76-80.
[10] Tu Yining, Seng Jialang. Indices of novelty for emerging topic detection[J]. Journal of Information Processing and Management, 2012, 48(2): 303-325.
[11] 王晓光. 科学知识网络的结构与演化(I):共词网络方法的提出[J]. 情报学报, 2009, 28(4): 599-605.
[12] 王晓光. 科学知识网络的结构与演化(II):共词网络可视化与增长动力学[J]. 情报学报, 2010, 29(2): 314-322.
[13] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[14] Boyack K W, Klavans R, Brner K. Mapping the backbone of science[J]. Scientometrics, 2005,64(3): 351-374.
[15] Lambiottea R, Panzarasab P. Communities, knowledge creation, and information diffusion[J]. Journal of Informetrics,2009,3(3): 180-190.
[16] Ding Ying. Community detection: Topological vs. Topical[J]. Journal of Informetrics, 2011,5(4): 498-514.
[17] Newman M.Analysis of weighted networks[J].The American Physical Society,2004,70(5):56-64.
[18] McCain K W. Assessing an author's influence using time series historic graphic mapping: The oeuvre of Conrad Hal Waddington (1905-1975)[J]. Journal of the American Society for Information Science and Technology, 2008, 59(4): 510–525.
[19] Guimer'a R, Sales-Pardo M, Amaral L A. Classes of complex networks defined by role-to-role connectivity profiles[J]. Nature Physics, 2007,3(1): 63-69.
[20] Palla G, Barabási A, Vicsek T. Quantifying social group evolution[J]. Nature, 2007, 446(7136):664-667.
[21] 钱铁云, 李青, 许承瑜. 面向科技主题发展分段的社区核心圈技术[J]. 计算机科学与探索, 2010(2):170-179.

文章导航

/