收稿日期: 2013-05-06
修回日期: 2013-06-04
网络出版日期: 2013-06-20
基金资助
本文系国家自然科学基金项目"不平衡数据的学习算法及应用研究"(项目编号:61070061)、广东外语外贸大学研究生科研创新项目"微博信息可信度分析技术及其应用研究"(项目编号:13GWCXXM-33)及广州市越秀区科技计划项目"云企业资源搜索引擎iiERD"(项目编号:2012-TP-005)研究成果之一。
Research Review of Information Credibility Analysis on Microblog
Received date: 2013-05-06
Revised date: 2013-06-04
Online published: 2013-06-20
蒋盛益 , 陈东沂 , 庞观松 , 吴美玲 , 王连喜 . 微博信息可信度分析研究综述[J]. 图书情报工作, 2013 , 57(12) : 136 -142 . DOI: 10.7536/j.issn.0252-3116.2013.12.026
This paper introduces the background and significance of information credibility research on microblog, and gives relevant definitions on it. Then it summarizes the related achievements and concludes the existing drawbacks. It further proposes that the key problems to evaluate information credibility on microblog include the feature extraction in microblog and design of credibility analysis methods. Based on microblog’s feature and current research achievements, this paper concludes that the key technologies of information credibility analysis on microblog involve natural language processing, social network analyzing, machine learning and data mining. With a summarization, it finally looks to the future development, to make references for further research.
[1] Stanford Web credibility research [EB/OL]. [2012-11-01]. http://credibility.stanford.edu/research.html.
[2] Tseng S, Fogg B J. Credibility and computing technology [J]. Communications of the ACM, 1999, 42(5): 39-44.
[3] Self C S. Credibility [J]. An Integrated Approach to Communication Theory and Research, 1996, 1(1): 421-441.
[4] Fogg B J, Tseng H. The elements of computer credibility[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1999: 80-87.
[5] 刘挺.互联网信息可信度问题[EB/OL]. [2012-12-01].http://caai.cn/contents/49/102.html.
[6] Fogg B J, Soohoo C, Danielson D R, et al.How do users evaluate the credibility of Web sites?: A study with over 2500 participants[C]//Proceedings of the 2003 Conference on Designing for User Experiences. New York: ACM, 2003:1-15.
[7] Van House N. Weblogs: Credibility and collaboration in an online world [EB/OL].[2012-11-11].http://people.ischool.berkeley.edu/~vanhouse/Van%20House%20trust%20workshop.pdf.
[8] Rubin V L, Liddy E D. Assessing credibility of weblogs[C]//Proceedings of the AAAI Symposium on Computational Approaches to Analysing Weblogs. Palo Alto: ACM, 2006: 187-190.
[9] Gyöngyi Z, Garcia-Molina H, Pedersen J. Combating Web spam with trustrank[C]//Proceedings of the Thirtieth International Conference on Very Large Data Bases.Toronto: VLDB Endowment, 2004:576-587.
[10] Erdélyi M, Garzó A, Benczúr A A.Web spam classification:A few features worth more[C]//Proceedings of the 2011 Joint WICOW/AIR Web Workshop on Web Quality. New York: ACM, 2011:27-34.
[11] Wang A H. Don’t follow me: Spam detection in Twitter [C]//Proceedings of the International Conference on Security and Cryptography. Athens:SciTePress, 2010: 142-151.
[12] Magno G, Rodrigues T. Detecting spammers on Twitter [EB/OL]. [2012-12-12].http://ceas.cc/2010/papers/Paper%2021.pdf.
[13] Qazvinian V, Rosengren E, Radev D R,et al. Rumor has it: Identifying misinformation in microblogs[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh: ACL, 2011:1589-1599.
[14] Seo E, Mohapatra P, Abdelzaher T.Identifying rumors and their sources in social networks [EB/OL]. [2012-10-05].http://spirit.cs.ucdavis.edu/pubs/conf/prasant-spie12.pdf.
[15] Castillo C, Mendoza M, Poblete B.Information credibility on Twitter[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011: 675-684.
[16] Al-Khalifa H S, Al-Eidan R M. An experimental system for measuring the credibility of news content in Twitter [J].International Journal of Web Information Systems, 2011, 7(2):130-151.
[17] Suzuki Y.A credibility assessment for message streams on microblogs[C]//Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Washington, DC: IEEE, 2010: 527-530.
[18] Mendoza M, Poblete B, Castillo C. Twitter under crisis: Can we trust what we RT? [C]//Proceedings of the First Workshop on Social Media Analytics. New York: ACM, 2010:71-79.
[19] Canini K R, Suh B, Pirolli P.Finding credible information sources in social networks based on content and social structure[C]//Proceedings of the third IEEE International Conference on Social Computing.Boston:IEEE, 2011:1-8.
[20] 卞先华,陈亮,郑倩冰.基于文本内容和社会结构的可信度[J].重庆理工大学学报(自然科学版), 2013, 27(1):57-61.
[21] 王晟,王子琪,张铭.个性化微博推荐算法[J].计算机科学与探索,2012, 10(1):1-9.
[22] Gupta A, Kumaraguru P. Credibility ranking of Tweets during high impact events [EB/OL]. [2012-11-11].http://precog.iiitd.edu.in/Publications_files/a2-gupta.pdf.
[23] Gupta M, Zhao Pengxiang, Han Jiawei. Evaluating event credibility on Twitter[C]//Proceedings of the Twelfth SIAM International Conference on Data Mining. Anaheim: Omni Press, 2012:153-164.
[24] Xue Zhenzhen, Yin Dawei, Davison B D. Normalizing microtext[C]//Proceedings of the AAAI-11 Workshop on Analyzing Microtext. San Francisco,AAAI, 2011: 74-79.
[25] Yan Tao, Wang Xiwei. Feature extension for short text[C]//Proceedings of the Third International Symposium on Computer Science and Computational Technology.Jiaozuo Academy Publisher,2010: 338-341.
[26] Hu Xia, Sun Nan, Zhang Cao, et al. Exploiting internal and external semantics for the clustering of short texts using world knowledge[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 919-928.
[27] 彭泽映,俞晓明,许洪.大规模短文本的不完全聚类[J].中文信息学报, 2011, 25(1): 54-59.
[28] 金春霞,周海岩.动态向量的中文短文本聚类[J].计算机工程与应用,2011,47(33):156-158.
[29] Weng Jianshu, Lim E, Jiang Jing, et al. Twitterank: Finding topic-sensitive influential Twitterers[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM, 2010: 261-270.
[30] Cha M, Haddadi H, Benevenuto F. Measuring user influence in Twitter:The million follower fallacy[C]//Proceedings of the 4th International Conference on Weblogs and Social Media. Washington DC AAAI, 2010:10-17.
[31] Phuvipadawat S, Murata T. Detecting a multi-level content similarity from microblogs based on community structures and named entities [J]. Journal of Emerging Technologies in Web Intelligence, 2011, 3(1): 11-19.
[32] Zhang Yang,Wu Yao, Yang Qing. Community discovery in Twitter based on user interests [J]. Journal of Computational Information Systems, 2012, 8(3): 991-1000.
/
〈 | 〉 |