收稿日期: 2013-06-28
修回日期: 2013-08-20
网络出版日期: 2013-09-05
基金资助
本文系山东省自然科学基金项目"大规模学术文献并行处理与语义分类研究" (项目编号:ZR2011GL025)和山东理工大学青年教师发展支持计划研究成果之一。
Knowledge Innovational Evolution Analysis Based on k-clique Community Network
Received date: 2013-06-28
Revised date: 2013-08-20
Online published: 2013-09-05
提出一种基于k-clique社区的知识创新演化揭示方法。首先,构建科技文献时序关键词共词网络。然后,将共词网络划分为n个最大完整子网络Gs,在Gs中寻找k-clique(2 < k < s)。最后,在给定阈值k的情况下,计算k-clique社区的演化情况,从而揭示知识创新情况。该方法不仅能够有效揭示知识创新演化过程,而且能够通过k-clique社区的关键节点,揭示知识创新过程中的共性知识以及不同知识创新领域的互相影响情况。通过对碳纳米管研究领域2008-2012年SCI数据库论文数据的实验证明,该方法能准确识别出该领域知识创新主要方向,并能准确反映其演化情况。
白如江 , 冷伏海 . k-clique社区知识创新演化方法研究[J]. 图书情报工作, 2013 , 57(17) : 86 -94 . DOI: 10.7536/j.issn.0252-3116.2013.17.017
This paper proposes a method based on k-clique communities to reveal knowledge innovation and evolution. Firstly, we construct timing keywords co-words network. Then, co-word network is divided into n largest complete sub-network Gs, and looking for K-CLIQUE (2 < k < s) in Gs. Finally, we calculate the evolution of k-CLIQUE communities in the case of a given threshold value, k. This method can effectively reveal the evolution of knowledge innovation and key nodes through k-clique communities overlap. According the structural holes theory, it can reveal the common knowledge, and how it affects each other in the field of innovation. Experiments show that the method can accurately identify the main direction of the field of knowledge innovation, and accurately reflect the evolution of the situation using the SCI database data about carbon nanotube research from 2008 to 2012.
Key words: community network; knowledge innovation; topic evolution; co-words network
[1] Zwicky F.Morphological astronomy[J].The Observatory,1948,68(845):121-143.
[2] TRIZ-What is TRIZ[EB/OL].[2013-03-01].http://www.triz-journal.com/archives/what_is_triz/.
[3] Karki M M S. Patent citation analysis: A policy analysis tool[J].World Patent Information,1997,19(4):269-272.
[4] Mitchell V W.The Delphi technique: An exposition and application[J].Technology Analysis & Strategic Management,1991,3(4):333-358.
[5] 肖沪卫,顾震宇.专利地图方法与应用[M].上海:上海交通大学出版社, 2011.
[6] 方曙. 基于专利文献的技术演化分析方法研究[J].图书情报工作,2011, 55(22):42-46.
[7] Yoon B, Park Y.A text-mining-based patentnetwork:Analytical tool for high-technology trend[J].The Journal of High Technology Management Research,2004, 15(1):37-50.
[8] Chang P L, Wu C C, Leu H J.Using patent analyses to monitor the technological trends in an emerging field of technology:A case of carbon nanotube field emission display[J].Scientometrics,2010, 82(1): 5-19.
[9] Zhang Jianwen,Song Yangqiu,Zhang Changshui,et al.Evolutionary hierarchical Dirichlet processes for multiple correlated time-varying corpora[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2010:1079-1088.
[10] Allan J. Topic detection and tracking:Event-based information organization[M]. Norwell: Kluwer Academic Publishers,2002.
[11] Zhang Jian,Ghahramani Z,Yang Yiming. A probabilistic model for online document clustering with application to novelty detection[C]//Proceeding of Eighteenth Annual Conference on Neural Information Processing Systems. Vancouver: NIPS,2005:1617-1624.
[12] Chakrabarti D,Kumar R,Tomkins A. Evolutionary clustering[C]//Proceedings of the 12nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2006:554-560.
[13] Chi Yun,Song Xiaodan,Zhou Dengyong,et al. Evolutionary spectral clustering by incorporating temporal smoothness[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2007:153-162.
[14] Xu Tianbing,Zhang Zhongfei,Yu P S,et al. Dirichlet process based evolutionary clustering[C]//Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society,2008:648-657.
[15] Xu Tianbing,Zhang Zhongfei,Yu P S,et al. Evolutionary clustering by hierarchical Dirichlet process with hidden Markov state[C]//Proceedings of the 2008 Eighth IEEE International Conference on Data Mining.Washington, DC:IEEE Computer Society,2008:658-667.
[16] Zhang Jianwen,Song Yangqiu,Chen Gang,et al. On-line evolutionary exponential family mixture[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers Inc.,2009:1610-1615.
[17] Blei D M,Lafferty J D. Dynamic topic models[C]//Proceedings of the 23rd International Conference on Machine learning. New York:ACM,2006:113-120.
[18] Wang Chong,Blei D M,Heckerman D. Continuous time dynamic topic models[C]//Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. Helsinki: Association for Uncertainty in Artificial Intelligence,2008:579-586.
[19] Wang Xuerui,McCallum A. Topics over time:A non-Markov continuous time model of topical trends[C]//Proceedings of the 12nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia: ACM,2006:424-433.
[20] Blei D M,Ng A Y,Jordan M I. Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
[21] Herrera M, Roberts D C,Gulbahce N. Mapping the evolution of scientific fields[J].PLoS ONE,2009,5(5):e10355.
[22] Wallace M L, Gingras Y, Duhon R. A new approach for detecting scientific specialties from raw cocitation networks[J]. Journal of the American Society for Information Science and Technology, 2009, 60 (2) : 240-246.
[23] Chen P, Redner S. Community structure of the Physical Review citation networks[J]. Journal of Informetrics, 2010,4(3): 278-290.
[24] Kontostathis A, Galitsky L, Pottenger W M,et al. A survey of emerging trend detection in textual data mining[C]//Berry M.A Comprehensive Survey of Text Mining. Heidelberg: Springer-Verlag, 2003:185-224.
[25] Pottenger W M, Yang T H. Detecting emerging concepts in textual data mining[M]//Berry M W.Computational Information Retrieval.Philadelphia: Society for Industrial and Applied Mathematics, 2001: 89-105.
[26] Roy S,Gevry D,Pottenger W M. Methodologies for trend detection in textual data mining[EB/OL].[2013-03-11].http://www.cse.lehigh.edu/~billp/pubs/ETDMethodologies.pdf
[27] Chen Chaomei. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of The American Society for Information Science and Technology,2006,57(3): 359-377.
[28] Rosvall M, Bergstrom C T. Mapping change in large networks[J]. PLoS ONE, 2010, 5(1): e8694.
[29] 叶春蕾,冷伏海. 基于共词分析的学科主题演化方法改进研究[J]. 情报理论与实践,2012,35(3):79-82.
[30] 冷伏海,王建芳. 科技创新演化循证分析理论与方法研究论纲[J]. 图书情报工作,2009,53(6):21-23,15.
[31] 崔凯,周斌,贾焰,梁政. 一种基于LDA的在线主题演化挖掘模型[J]. 计算机科学,2010,37(11):156-159,193.
[32] 崔凯. 基于LDA的主题演化研究与实现[D].北京:国防科学技术大学,2010.
[33] 包成名,宗乾进,袁勤俭. 技术经济与管理学科研究热点、主题及方法演化——基于信息可视化的学科知识图谱构建[J]. 信息资源管理学报,2012(3):64-71.
[34] 李保利,杨星. 基于LDA模型和话题过滤的研究主题演化分析[J]. 小型微型计算机系统,2012,33(12):2738-2743.
[35] 程齐凯,王晓光. 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作,2013,57(8):91-96.
[36] 王晓光. 科学知识网络的结构与演化(I):共词网络方法的提出[J]. 情报学报, 2009, 28(4): 599-605.
[37] 王晓光. 科学知识网络的结构与演化(II):共词网络可视化与增长动力学[J]. 情报学报, 2010, 29(2) : 314-322.
[38] Palla G, Dere'nyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature,2005,435(7043):814-818.
[39] Everett M G,Borgatti S P.Analyzing clique overlap[J].Connections,1998,21(1):49-61.
[40] Sci2 Team.Sci2 Tool[EB/OL].[2013-04-16].http://sci2.cns.iu.edu.
/
〈 | 〉 |