在数据驱动的科研环境下,为服务于科研机构研究过程中知识资产长期保存管理的数字仓储领域,构建科研知识产出语义化关联组织的模型。总结数据驱动科研的知识对象类型、数据活动、科研活动,形成数据驱动的科学研究生命周期模型,并依据该模型和科研知识产出识别原则,分析科研过程各阶段场景中的关键科研知识产出类型和科研关系,然后设计有效组织科研知识产出、情境实体及其关系的数字对象模型框架,通过本体标准的复用,规范化类型名称和科研关系,构建关联组织科研知识产出和科研情境类的本体模型,为科研数字仓储构建揭示科研过程知识产出关联关系的语义层提供依据。
In the data-driven research environment, this paper builds a model for semantic links and organization of knowledge outputs, for digital storage area to provide long-term preservation management service of knowledge assets in the research process for the scientific research institutions. Firstly, this paper summarizes the types of knowledge outputs, data events and research events in the data-driven research environment, and constructs a model of research life cycle. Then it analyzes types of core knowledge outputs and research relationship based on this model and principles of recognizing knowledge outputs, and proposes a model framework of digital objects for effectively organizing knowledge outputs, scene entities and their relationships. Finally, it develops an ontology model of linking and organizing knowledge outputs and contextual entities by reusing, standardized type names and research relationship of ontology standards, in order to provide the basis for building the semantic layer of linking and organizing knowledge outputs in the research process.
[1] The fourth paradigm: Data-intensive scientific discovery[EB/OL].[2013-05-28]. http://iw.fh-potsdam.de/fileadmin/FB5/Dokumente/forschung/tagungen/i-science/TonyHey_-__eScience_Potsdam__Mar2010____complete_.pdf.
[2] Higgins S.The DCC curation lifecycle model[J]. The International Journal of Digital Curation, 2008, 3(1):134-140.
[3] Allard S. DataONE: Facilitating eScience through collaboration[J]. Journal of eScience Librarianship, 2012, 1(1):3-17.
[4] Humphrey C. e-Science and the life cycle of research[EB/OL].[2013-05-28].http://datalib.library.ualberta.ca/~humphrey/lifecycle-science060308.doc.
[5] Hey T, Tansley S, Tolle K. The fourth paradigm:Data-intensive scientific discovery[M]. Redmond: Microsoft Research, 2009: 147-152.
[6] University of Oxford. Digital services to support research: Appraisal of existing and future infrastructure[EB/OL].[2013-05-28]. http://damaro.oucs.ox.ac.uk/docs/Dig_Inf_to_Supp_Research_Workshop_Talk_1_13%20July%202012_vs%200%2092%20(3).pdf.
[7] Patel M. I2S2 idealised scientific research activity lifecycle model[EB/OL].[2013-05-28]. http://opus.bath.ac.uk/35186/1/I2S2_ResearchActivityLifecycleModel_110407.pdf.
[8] 罗泽, 阎保平. 青海湖区域重要野生鸟类监测与空间分布格局研究示范应用[J]. 办公自动化, 2010(18):44-48.
[9] Gold A K. Cyberinfrastructure, data, and libraries, part 1: A cyberinfrastructure primer for librarians[J/OL]. D-Lib Magazine, 2007, 13(9/10).[2013-06-10]. http://www.dlib.org/dlib/september07/gold/09gold-pt1.html.
[10] Lyon L. Dealing with data: Roles, rights, responsibilities and relationships[EB/OL].[2013-06-10].http://opus.bath.ac.uk/412/1/dealing_with_data_report%2Dfinal.pdf.
[11] Hunter J. Scientific publication packages-A selective approach to the communication and archival of scientific output[J]. International Journal of Digital Curation, 2006, 1(1):33-52.
[12] Coles S, Frey J, Hursthouse M, et al. The "end to end" crystallographic experiment in an e-Science environment: From conception to publication[C]//Proceedings of the e-Science All Hands Meeting. Nottingham:2005.
[13] 汪国平. 第八讲 仿真模拟技术及其应用[J]. 物理, 2005(08):596-602.
[14] 马明国, 晋锐, 郭建文. 寒旱区遥感观测系统试验站e-Science建设构想[J]. 科研信息化技术与应用, 2010(3):71-81.
[15] W3C. PROV Model Primer[EB/OL].[2013-06-17]. http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/.
[16] VIVO.VIVO Ontology[EB/OL].[2013-06-17].http://vivoweb.org/files/vivo-core-public-1.5.owl.
[17] DCMI. DCMI Metadata Terms[EB/OL].[2013-06-17]. http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=terms#.
[18] Sufi S, Mathews B. CCLRC scientific metadata model: Version 2[R/OL].[2013-04-15].http://epubs.cclrc.ac.uk/bitstream/485/csmdm.version-2.pdf.
[19] National Science Board. Long-lived digital data collections: Enabling research and education in the 21st century[EB/OL].[2013-06-17].http://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf.
[20] Green A, Macdonald S, Rice R. Policy-making for research data in repositories:A guide[EB/OL].[2013-04-15].http://pdf.aminer.org/000/222/918/distributed_data_repository_supporting_ad_hoc_collaborations.pdf.
[21] Arzberger P, Schroeder P, Beaulieu A, et al. Promoting access to public research data for scientific, economic, and social development[J]. Data Science Journal, 2004, 3(11):135-152.
[22] Shotton D, Peroni S. FaBiO, the FRBR-aligned Bibliographic Ontology[EB/OL].[2013-06-17]. http://speroni.web.cs.unibo.it/cgi-bin/lode/req.py?req=http:/purl.org/spar/fabio.
[23] Arcus B D, Giasson F. Bibliographic Ontology Specification[EB/OL].[2013-06-17]. http://bibliontology.com/specification.
[24] Bechhofer S, Ainsworth J, Bhagat J, et al. Why linked data is not enough for scientists[C]//Proceedings of the Sixth IEEE e-Science Conference, Brisbane, 2010.
[25] Moreau L, Clifford B, Freire J, et al. The Open Provenance Model Core Specification (v1.1)[EB/OL].[2013-06-10].http://eprints.soton.ac.uk/268332/1/opm.pdf.