收稿日期: 2013-10-08
修回日期: 2013-11-04
网络出版日期: 2013-11-20
基金资助
本文系国家自然科学基金项目“异构'非网页'资源的组织与融合方法研究”(项目编号:70903008)和国家科技支撑计划项目“文化资源服务平台解决方案及标准研究”的子课题“文化资源数字化建设规范与标准研究”(项目编号:2012BAH01F01-03)研究成果之一。
Resource Organization Systems from Folksonomy to Hierarchical:Constructing the Tag Tree by Exploiting Clustering Information
Received date: 2013-10-08
Revised date: 2013-11-04
Online published: 2013-11-20
罗鹏程 , 陈翀 . 从大众分类到层次式资源组织体系——利用聚类信息构建标签树[J]. 图书情报工作, 2013 , 57(22) : 120 -125,59 . DOI: 10.7536/j.issn.0252-3116.2013.22.019
This paper proposes a new approach to automatically construct the resource navigation system with taxonomy from social annotation. Tags are first clustered to groups according to topics through clustering technology; then a sub-tree is constructed according to tags' similarity and their generality degree in each group. The open Social-ODP-2k9 tags dataset are experimented on to make effectiveness evaluation. The method overcomes the shortcoming of semantic-drift in the existing method, and improves the semantic consistency of information organization and efficiency of navigation, to meet the new practical need for information organization and services.
Key words: social annotation; tag tree; resource organization; navigation
[1] Ramage D, Heymann P, Manning C D, et al. Clustering the tagged Web[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining. New York: ACM, 2009: 54-63.
[2] Zubiaga A, Martínez R, Fresno V. Getting the most out of social annotations for Web page classification[C]//Proceedings of the 9th ACM Symposium on Document Engineering. New York: ACM, 2009: 74-83.
[3] Bao Shenghua, Wu Xiaoyuan, Fei Ben, et al. Optimizing Web search using social annotations[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 501-510.
[4] Heymann P, Koutrika G, Garcia-Molina H. Can social bookmarking improve Web search?[C]//Proceedings of the International Conference on Web Search and Web Data Mining. New York: ACM, 2008: 195-206.
[5] Begelman G, Keller P, Smadja F. Automated tag clustering: Improving search and exploration in the tag space[C]//Collaborative Web Tagging Workshop at WWW2006. New York: ACM, 2006: 15-33.
[6] Cui Jianwei, Liu Hongyan, He Jun, et al. TagClus:A random walk-based method for tag clustering[J]. Knowledge and Information Systems, 2011, 27(2): 193-225.
[7] Laniado D, Eynard D, Colombetti M. Using WordNet to turn a folksonomy into a hierarchy of concepts[C]//Proceedings of 4th Italian Semantic Web Workshop.Bari:University of Bari, 2007: 192-201.
[8] Lin H, Davis J, Zhou Ying. An integrated approach to extracting ontological structures from folksonomies[M]//The Semantic Web:Research and Applications. Berlin:Springer, 2009: 654-668.
[9] Heymann P, Garcia-Molina H. Collaborative creation of communal hierarchical taxonomies in social tagging systems[R/OL].[2013-05-26]. http://ilpubs.stanford.edu:8090/775/?auth=basic.
[10] Song Yang, Qiu Baojun, Farooq U. Hierarchical tag visualization and application for tag recommendations[C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York: ACM, 2011: 1331-1340.
[11] Zhou Mianwei, Bao Shenghua, Wu Xian, et al. An unsupervised model for exploring hierarchical semantics from social annotations[C]// Proceedings of the 6th International Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference. Berlin: Springer, 2007: 680-693.
[12] Strohmaier M, Helic D, Benz D, et al. Evaluation of folksonomy induction algorithms[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3(4): 74.
[13] Plangprasopchok A, Lerman K, Getoor L. Growing a tree in the forest: Constructing folksonomies by integrating structured metadata[C]//Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data mining. New York: ACM, 2010: 949-958.
[14] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226-231.
[15] Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133-1-066133-5.
[16] 陈翀, 罗鹏程, 刘晓兵, 等. 网络资源层次组织规律定量研究[J]. 中国图书馆学报, 2012 (6): 72-80.
[17] Social-ODP-2k9数据集 [EB/OL]. [2013-11-08]. http://nlp.uned.es/social-tagging/socialodp2k9/.
/
〈 | 〉 |