理论研究

微博信息生命周期研究

  • 刘晓娟 ,
  • 王昊贤 ,
  • 张爱芸
展开
  • 北京师范大学政府管理学院
刘晓娟,北京师范大学政府管理学院副教授,博士,E-mail:lxj_2007@bnu.edu.cn;王昊贤,北京师范大学政府管理学院本科生;张爱芸,北京师范大学政府管理学院硕士研究生。

收稿日期: 2013-12-10

  修回日期: 2013-12-21

  网络出版日期: 2014-01-05

Research on Lifecycle of Microblog

  • Liu Xiaojuan ,
  • Wang Haoxian ,
  • Zhang Aiyun
Expand
  • School of Government, Beijing Normal University, Beijing 100875

Received date: 2013-12-10

  Revised date: 2013-12-21

  Online published: 2014-01-05

摘要

作为一种新环境下的信息资源,微博产生的海量数据也具有相应的生命周期。以3个微博热门话题数据为分析对象,将评论数作为微博信息生命周期的表征量,分析微博信息生命周期的特征、分布类型、半衰期等。发现微博信息生命周期有负指数型、平缓型、爆发型和锯齿型4种类型,其类型特征与微博活跃度无关,并且微博信息不具有特定的半衰期。

本文引用格式

刘晓娟 , 王昊贤 , 张爱芸 . 微博信息生命周期研究[J]. 图书情报工作, 2014 , 58(01) : 72 -78,100 . DOI: 10.13266/j.issn.0252-3116.2014.01.010

Abstract

As a kind of information resource in new environment, the mass data produced by Microblog has its lifespan. Based on the study of three hot topics from Microblog, the amount of comments is considered as the characteristic parameter of Microblog message's lifecycle. The study analyzes the features and distribution of Microblog message's lifecycle and its half-life. The types of Microblog message's life cycle include negative exponent, flat, burst andzigzag. The Microblog doesn't have a fixed half-life and its activity is irrelevant to its lifespan type.

参考文献

[1] Lardinois F. The short lifespan of a tweet: Retweets only happen within the first hour[EB/OL].[2013-11-20]. http://readwrite.com/2010/09/29/the_short_lifespan_of_a_tweet_retweets_only_happen#awesm=~onHN0dzZd0FEm7.
[2] Zaman T, Fox E B, Bradlow E T.A Bayesian approach for predicting the popularity of tweets[OL].[2013-11-20]. http://arxiv.org/pdf/1304.6777v1.pdf.
[3] Barbagallo D, Bruni L, Francalanci C, et al. An empirical study on the relationship between Twitter sentiment and influence in the tourism domain[C]//Proceedings of 19th eTourism Community Conference. New York:Springer, 2012:506-516.
[4] Yang Zi, Guo Jingyi, Cai Keke, et al.Understanding retweeting behaviors in social networks[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management.New York: ACM, 2010: 1633-1636.
[5] Kong Shoubin, Feng Ling, Sun Guozheng. Predicting lifespans of popular tweets in Microblog[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2012:1129-1130.
[6] Naveed N, Gottron T, Kunegis J, et al. Bad news travel fast:A content-based analysis of interestingness on Twitter[C]//Proceedings of the ACM WebSci'11. New York:ACM, 2011:1-7.
[7] Spiro E, Dubois C, Butts C. Waiting for a retweet: Modeling waiting times in information propagation[EB/OL].[2013-12-02]. http://snap.stanford.edu/social2012/papers/spiro-dubois-butts.pdf.
[8] Zhao Xun, Zhu Feida, Qian Weining, et al. Impact of multimedia in Sina weibo: Popularity and life span[C]//Semantic Web and Web Science. New York:Springer, 2013: 55-65.
[9] Jenders M, Kasneci G, Naumann F. Analyzing and predicting viral tweets[C]//The 22nd International Conference on World Wide Web Companion. Geneva: International World Wide Web Conferences Steering Committee, 2013:657-664.
[10] Price D J. Network of Science Papers[J]. Science, 1965, 149(3683): 510-515.
[11] Gosnell C F. Obsolescence of books in college libraries[J].College and Research Libraries, 1944, 5(2):115-125.
[12] 邱均平.信息计量学[M].武汉:武汉大学出版社, 2007.

文章导航

/