情报研究

基于内容分析的用户评论质量的评价与预测

  • 聂卉
展开
  • 中山大学资讯管理系
聂卉,中山大学资讯管理系副教授,博士,硕士生导师,E-mail:issnh@mail.sysu.edu.cn。

收稿日期: 2014-05-04

  修回日期: 2014-06-01

  网络出版日期: 2014-07-05

基金资助

本文系广东省哲学社会科学“十二五”规划2013年度项目“基于情境和用户感知的知识推荐机制研究”(项目编号:CD13CTS01)研究成果之一。

Content-oriented Evaluation and Detection for Product Reviews

  • Nie Hui
Expand
  • School of Information Management, Sun Yat-sen University, Guangzhou 510275

Received date: 2014-05-04

  Revised date: 2014-06-01

  Online published: 2014-07-05

摘要

以获取高质量的用户评论为直接目标,研究评论质量的评估和“有用评论”的自动识别。主要从评论内容的语言特征、语义内容、情感倾向等多个特征维度来探索文本特征对用户可感知的效用的影响力,采用深层次的文本内容分析技术提取特征指标,并结合计量分析和机器学习方法验证指标的科学性,设计可行的面向效用价值的预测模型。研究证明,依据评论内容可有效探测评论质量,辨识高质量评论,提高评论的效用价值。

本文引用格式

聂卉 . 基于内容分析的用户评论质量的评价与预测[J]. 图书情报工作, 2014 , 58(13) : 83 -89 . DOI: 10.13266/j.issn.0252-3116.2014.13.014

Abstract

In order to access high-quality product reviews, this paper studied how to evaluate the quality of reviews and automatically identify the most useful reviews. It particularly examined how the textual aspect of a review affects the perceived usefulness, in terms of linguistic characteristics, semantics contents, and emotional tendencies. This paper adopted advanced text analysis techniques to extract feature indicators, validated their practicability through quantitative analysis and machine learning methods, and then designed a feasible utility-oriented prediction model. The results indicated that based on the review contents, reviews with high quality can be detected in order to improve the utility value of reviews.

参考文献

[1] Ghose A, Ipeirotis P G. Estimating the helpfulness and economic impact of product reviews:Mining text and reviewer characteristics[J].IEEE Transactions on Knowledge and Data Engineering, 2011,23(10): 1498-1512.

[2] 姜巍,张莉,戴翼,等.面向用户需求获取的在线评论有用性分析[J].计算机学报, 2013,36(1): 119-131.

[3] Kim S,Pantel P, Chklovski T,et al. Automatically assessing review helpfulness[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2006:423-430

[4] Zhang Zhu, Varadarajan B. Utility scoring of product reviews[C]//Proceedings of the 15th ACM International Conference on Information and Knowledge Management. New York:ACM, 2006: 51-57.

[5] Liu Jingjing, Cao Yunbo, Lin Chin-Yew, et al. Low-quality product review detection in opinion summarization[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg:Association for Computational Linguistics, 2007: 334-342.

[6] Otterbacher J.“Helpfulness” in online communities: A measure of message quality[C]//Proceedings of the 27th International Conference on Human Factors in Computing Systems, New York:ACM, 2009: 955-964.

[7] Ghose A, Ipeirotis P G. Designing novel review ranking systems: Predicting the usefulness and impact of reviews[C]//Proceedings of the Ninth International Conference on Electronic Commerce. New York: ACM,2007:303-310

[8] Wang Y, Richard, Strong M. Diane. Beyond accuracy:What data quality means to data consumers[J].Journal of Management Information System, 1996, 12(4): 5-34.

[9] Johnson J,Lebreton J. History and use of relative importance indices in organizational research[J].Organizational Research Methods, 2004, 7(3):238-257.

[10] LeBreton J M, Tonidandel S. Multivariate relative importance: Extending relative weight analysis to multivariate criterion spaces[J].Journal of Applied Psychology, 2008, 93(2): 329-345.

文章导航

/