知识组织

面向大规模多维社会网络的社区发现研究

  • 吴小兰 ,
  • 章成志
展开
  • 1. 徽财经大学管理科学与工程学院;
    2. 南京理工大学信息管理系
吴小兰,安徽财经大学管理科学与工程学院,南京理工大学信息管理系博士研究生,E-mail:wuxiaolananhui@163.com;章成志,南京理工大学信息管理系教授,博士,博士生导师。

收稿日期: 2014-05-27

  修回日期: 2014-07-04

  网络出版日期: 2014-08-20

基金资助

本文系国家社会科学基金项目“在线社交网络中基于用户的知识组织模式研究”(项目编号:14BTQ033)和安徽财经大学2014年度校级科研项目“大尺度在线社会网络的社区发现及其应用研究”(项目编号:ACKY1428)研究成果之一。

Community Detection for Large-scale Multi-dimensional Network

  • Wu Xiaolan ,
  • Zhang Chengzhi
Expand
  • 1. School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030;
    2. Department of Information Management, Nanjing University of Science and Technology, Nanjing 210094

Received date: 2014-05-27

  Revised date: 2014-07-04

  Online published: 2014-08-20

摘要

认为处于多维社会网络中的用户会表现出多种行为取向和兴趣爱好,单独使用多维网络中的一维很难进行有效的社区发现。为了有效解决以上问题,首先基于用户关系紧密度将社交媒体中有向网转化为无向带权网,并将所有一维社交网络进行集成;然后利用SSN-LDA对社交用户进行隐含社区建模,以根据用户-隐含社区概率分布计算用户相似度;最后使用二分K均值进行用户社区划分。在真实科学网博客上进行试验,结果表明该方法能较好地进行用户社区划分。

本文引用格式

吴小兰 , 章成志 . 面向大规模多维社会网络的社区发现研究[J]. 图书情报工作, 2014 , 58(16) : 122 -130 . DOI: 10.13266/j.issn.0252-3116.2014.16.019

Abstract

Users in multi-dimensional network usually show a variety of behaviors and interests, so it is hard to find effective communities by using only one dimension. In order to effectively solve the above problem, this paper firstly maps directed networks into undirected weighted networks based on user relationship strength, and then integrates all the networks. Secondly, this paper models hidden community by using SSN-LDA, and calculates the users' similarity by user-community probability distribution matrix. At last, Bisecting K-Means is used to detect community of users. Through the experiments on real Science blog, the result shows that this method can get more accurate user community.

参考文献

[1] Wasserman S. Social network analysis: Methods and applications[M]. London:Cambridge University Press,1994.

[2] Scott J. Social network analysis: A handbook (2nd ed)[M]. London:Sage Publications,2000.

[3] Moody J. Race, school integration, and friendship segregation in American[J]. American Journal of Sociology,2001, 107(3): 679-716.

[4] Fortunato S. Community detection in graphs[J]. Physics Reports,2010, 486(3): 75-174.

[5] Newman M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences,2006, 103(23): 8577-8582.

[6] Liu Zonghua,Hu Bambi. Epidemic spreading in community networks[J]. Europhysics Letters,2005, 72(2): 315-321.

[7] Huang Wei,Li Chunguang. Epidemic spreading in scale-free networks with community structure[J]. Journal of Statistical Mechanics: Theory and Experiment,2007(1):P01014.

[8] Yan Gang, Fu Zhong-Qian, Ren Jie, et al. Collective synchronization induced by epidemic dynamics on complex networks with communities[J]. Physical Review E,2007, 75(1): 016108.

[9] Tang Lei, Wang Xufei,Liu Huan. Community detection in multi-dimensional networks[R]//Technical Report TR10-006.Arizona:Arizona State University,2010.

[10] 唐磊,刘欢. 社会计算:社区发现和社会媒体挖掘[M]. 北京:机械工业出版社,2012.

[11] 刘萍,陈枫琳. 基于社会资本的异构社会网络构建研究[J]. 情报学报,2013, 32(8): 805-816.

[12] Pan Wei, Aharony N,Pentland A. Composite social network for predicting mobile apps installation[C]//AAAI.Proceedings of the Twenty-Fifth AAAI Conference on Arifical Intelligence. New York:AAAI Press, 2011:821-827.

[13] Shao Zheng, He Xiaofei, et al. Community mining from multi-relational networks[C]//ECML. Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases.New York:Springer,2005: 445-452.

[14] Von Luxburg U. A tutorial on spectral clustering[J]. Statistics and computing,2007, 17(4): 395-416.

[15] Nowicki K,Snijders T A B. Estimation and prediction for stochastic blockstructures[J]. Journal of the American Statistical Association,2001, 96(455): 1077-1087.

[16] Airoldi E M, Blei D M, Fienberg S E, et al. Mixed membership stochastic blockmodels[J]. Journal of Machine Learning Research,2008(9):1981-2014,3.

[17] Hoff P D, Raftery A E,Handcock M S. Latent space approaches to social network analysis[J]. Journal of the American Statistical Association,2002, 97:1090-1098.

[18] Handcock M S, Raftery A E,Tantrum J M. Model‐based clustering for social networks[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society),2007, 170(2): 301-354.

[19] Zhang Haizheng, Qiu Baojun, Giles C L,et al. An LDA-based community structure discovery approach for large-scale social networks[C]//IEEE.Intelligence and Security Informatics.New York:IEEE Press, 2007 IEEE.2007:200-207.

[20] Blei D M, Ng A Y,Jordan M I. Latent dirichlet allocation[J].The Journal of Machine Learning Research,2003(3): 993-1022.

[21] Granovetter M. The strength of weak ties[J]. American Journal of Sociology,1973, 78(6):1360-1380.

[22] Marsden P V. Core discussion networks of Americans[J]. American Sociological Review,1987,52(1): 122-131.

[23] Burt R S. The social structure of competition[J]. Networks and Organizations: Structure, Form, and Action,1992,3(3):57-91.

[24] Gilbert E,Karahalios K. Predicting tie strength with social media[C]//ACM SIGCHI .Proceedings of the Conferece on Human Factors in Computing Systems (CHI'09). New York: ACM,2009:211-220.

[25] Kahanda I,Neville J. Using transactional information to predict link strength in online social networks[C]//AAAI. Proceedings of the Third International Conference on Weblogs and Social Media (ICWSM 2009) .New York:AAAI Press,2009.

[26] 张平. 基于密度模块的微博社区发现方法 [D]: 昆明:云南大学, 2013.

[27] San Mateo:Morgan Kaufmann. Expectation-propagation for the generative aspect model[C]//Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence San Mateo:Morgan Kaufmann,2002:352-359.

[28] Andrieu C, De Freitas N, Doucet A, et al. An introduction to MCMC for machine learning[J]. Machine learning,2003, 50(1-2): 5-43.

[29] Griffiths T L,Steyvers M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(Suppl 1): 5228-5235.

[30] Heinrich G. Parameter estimation for text analysis[R].Darmstadt:Fraunhofer IGD, 2009.

[31] Steinbach M, Karypis G,Kumar V. A comparison of document clustering techniques[C]//KDD Workshop on Text Mining .New York: Springer Verlag Press,2000:525-526.

[32] Tang Lei,Liu Huan. Community detection and mining in social media[J]. Synthesis Lectures on Data Mining and Knowledge Discovery,2010, 2(1): 1-137.

[33] Danon L, Diaz-Guilera A, Duch J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics: Theory and Experiment,2005, 2005(9): P09008.

[34] Raghavan U N, Albert R,Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E,2007, 76(3): 036106.

[35] Meeks E, Using word clouds for topic modeling results[OL].[2014-04-21]. https://dhs.stanford.edu/algorithmic-literacy/using-word-clouds-for-topic-modeling-results/.

文章导航

/