综述述评

国内外专利挖掘研究(2005-2014)综述

  • 屈鹏 ,
  • 张均胜 ,
  • 曾文 ,
  • 乔晓东 ,
  • 王惠临
展开
  • 中国科学技术信息研究所
屈鹏,中国科学技术信息研究所助理研究员,博士,E-mail:pqu@pku.edu.cn;张均胜,中国科学技术信息研究所副研究员,博士;曾文,中国科学技术信息研究所副研究员,博士;乔晓东,中国科学技术信息研究所研究员;王惠临,中国科学技术信息研究所研究员。

收稿日期: 2014-07-24

  修回日期: 2014-08-29

  网络出版日期: 2014-10-30

基金资助

本文系中国博士后科学基金特别资助项目“面向信息分析的专利文本挖掘研究”(项目编号:2013T60151)和国际合作项目“面向科技文献的日汉双向实用型机器翻译合作研究”(项目编号:2014DFA11350)研究成果之一。

A Review of Patent Mining Studies in China and Abroad 2005-2014

  • Qu Peng ,
  • Zhang Junsheng ,
  • Zeng Wen ,
  • Qiao Xiaodong ,
  • Wang Huilin
Expand
  • Institute for Scientific & Technical Information of China, Beijing 100038

Received date: 2014-07-24

  Revised date: 2014-08-29

  Online published: 2014-10-30

摘要

在中国知网、万方数据和Web of Science进行检索,获得72篇相关中文文献和98篇英文文献,并从中选出66篇进行综述。专利挖掘研究包括术语抽取、聚类、分类、以复杂网络为基础的方法、以时间为基础的方法和基于专利挖掘的技术研究等6个主题。尽管近10年来这一领域发展较快,但是部分研究也存在试验验证不精确、基于IPC的自动分类效果不好、所要解决的问题不明确且局限于方法应用和粒度粗糙等问题。专利挖掘研究应该注重发现问题,而非简单地应用方法。

本文引用格式

屈鹏 , 张均胜 , 曾文 , 乔晓东 , 王惠临 . 国内外专利挖掘研究(2005-2014)综述[J]. 图书情报工作, 2014 , 58(20) : 131 -137 . DOI: 10.13266/j.issn.0252-3116.2014.20.020

Abstract

The paper performs an exhausted literature review on patent mining. The authors retrieve CNKI, Wanfangdata and Web of Science, and gets 72 Chinese and 98 English papers. The review carefully chooses 66 from them. Patent mining includes the following topics: term extraction, clustering, categorization, methods based on complex network, methods based on time and technical studies based on patent mining. Although patent mining develops fast in last 10 years, there are problems calling for improvements. For example, test experiment lacks accuracy; the effectiveness of automatic categorization based on IPC is not satisfactory; the research question is not clear and certain research is contented with the application of a given method; the granularity is coarse, etc. The paper concludes that patent mining should pay adequate attention to putting forward new questions rather than merely applying existed methods to patents.

参考文献

[1] Tseng Yuenhsien, Lin Chijen, Lin Yui. Text mining techniques for patent analysis[J]. Information Processing and Management, 2007,43(5): 1216-1247.

[2] 韩红旗, 朱东华, 汪雪峰. 专利技术术语的抽取方法[J]. 情报学报, 2011, 30(12): 1280-1285.

[3] Frantzi K, Ananiadouk S, Mima H. Automatic recognition of multi-word terms:The C-value/NC-value method[J]. International Journal of Digital Library, 2000, 3(2): 115-130.

[4] 刘豹, 张桂平, 蔡东风. 基于统计和规则相结合的科技术语自动抽取研究[J]. 计算机工程与应用, 2008, 44(23): 147-150.

[5] 徐川, 施水才, 房祥, 等. 中文专利文献术语抽取[J]. 计算机工程与设计, 2013, 34(6): 2175-2179.

[6] 谷俊, 严明. 基于中文专利的新技术术语识别研究[J]. 情报科学, 2013, 31(1): 144-149.

[7] 屈鹏, 王惠临. 面向信息分析的专利术语抽取研究[J]. 图书情报工作, 2013, 57(1): 130-135.

[8] Li Yanru, Wang Leuohong, Hong Chaofu. Extracting the significant-rare keywords for patent analysis[J]. Expert Systems with Applications, 2009, 36(3): 5200-5204.

[9] 蔡爽, 黄鲁成. 基于聚类分析的专利申请组合研究[J]. 科技管理研究, 2009(4): 269-271.

[10] Kejzar N, Korenjak-Cerne S, Batagelj V. Clustering of distributions: A case of patent citations[J]. Journal of Classification, 2011, 28(2): 156-183.

[11] 田冬阳. 基于M3-DGMF的专利数据聚类方法研究[J]. 计算机应用与软件, 2013, 30(3): 297-303.

[12] Huang Suhsien, Ke Haoren, Yang Weipang. Structure clustering for Chinese patent documents[J]. Expert Systems with Applications, 2008, 34(4): 2290-2297.

[13] 郝智勇, 贺明科, 谭文堂, 等. 基于多维标度法的专利文本可视化聚类研究[J]. 计算机应用研究, 2010, 27(12): 4606-4607.

[14] Trappey C V, Trappey A J C, Wu Chunyi. Clustering patents using non-exhaustive overlaps[J]. Journal of Systems Science and Systems Engineering, 2010, 19(2): 162-181.

[15] Chang Shannbin, Lai Kueikuei, Chang Shumin. Exploring technology diffusion and classification of business methods: Using the patent citation network[J]. Technological Forecasting & Social Change, 2009, 76(1): 107-117.

[16] Lai Kueikuei, Wu Shiaojun. Using the patent co-citation approach to establish a new patent classification system[J]. Information Processing and Management, 2005, 41(2): 313-330.

[17] 李睿, 张玲玲, 郭世月. 专利同被引聚类与专利引用耦合聚类的对比分析[J]. 图书情报工作, 2012, 56(8): 91-95.

[18] 李道远, 贾晓亮, 田锡天, 等. 基于专利的工艺冲突矩阵挖掘方法研究[J]. 中国制造业信息化, 2011, 40(5): 19-23.

[19] Jun S, Park S S, Jang D S. Technology forecasting using matrix map and patent clustering[J]. Industrial Management & Data Systems, 2012, 112(5): 786-807.

[20] Choi S, Jun S. Vacant technology forecasting using new Bayesian patent clustering[J]. Technology Analysis & Strategic Management, 2014, 26(3): 241-251.

[21] Erdi P, Makovi K, Somogyvari Z, et al. Prediction of emerging technologies based on analysis of the US patent citation network[J]. Scientometrics, 2013, 95(1): 225-242.

[22] Yoon J, Kim K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1):213-228.

[23] 蒋健安, 陆介平, 倪巍伟, 等. 一种面向专利文献数据的文本自动分类方法[J]. 计算机应用, 2008, 28(1): 159-161.

[24] Chen Yenliang, Chang Yuanche. A three-phase method for patent classification[J]. Information Processing and Management,2012, 48(6): 1017-1030.

[25] Fall C J, Töcsvári A, Benzineb K, et al. Automated categorization in the international patent classification[OL].[2013-03-07]. http://www.sigir.org/forum/S2003/CJF_Manuscript_sigir.pdf.

[26] Trappey A J C, Hsu Fuqiang, Trappey C V, et al. Development of a patent document classification and search platform using a back-propagation network[J]. Expert Systems with Applications,2006, 31(4): 755-765.

[27] Trappey A J C, Trappey C V, Chiang Tzu'an, et al. Ontology-based neural network for patent knowledge management in design collaboration[J]. International Journal of Production Research, 2013, 51(7): 1992-2005.

[28] 李生珍, 王建新, 齐建东, 等. 基于BP神经网络的专利自动分类法[J]. 计算机工程与设计, 2010, 31(23): 5075-5078.

[29] 季铎, 蔡云雷, 蔡东风, 等. 基于共享最近邻的专利自动分类研究[J]. 沈阳航空工业学院学报, 2010, 27(4): 41-46.

[30] Zhang Xiaoyu. Interactive patent classification based on multi-classifier fusion and active learning[J]. Neurocomputing, 2014, 127(Advances in Intelligent Systems: Selected papers from the 2012 Brazilian Symposium on Neural Networks): 200-205.

[31] Wu Chihhung, Ken Yun, Huang Tao. Patent classification system using a new hybrid genetic algorithm support vector machine[J]. Applied Soft Computing, 2010, 10(4): 1164-1177.

[32] 粱静, 徐亮, 程文堂. 机器学习算法在药物专利分类中的应用研究[J]. 计算机与应用化学, 2007, 24(10): 1341-1344.

[33] Li Yaoyong, Bontcheva K, Cunningham H. SVM based learning system for F-term patent classification[C/OL] // Proceedings of the Sixth NTCIR Workshop Meeting on Evaluation of Information Access Technologies: Information Retrieval, Question Answering and Cross Lingual Information Access, 2007.[2013-03-07]. http://research.nii.ac.jp/ntcir/workshop/Online Proceedings6/NTCIR/38.pdf.

[34] D'hondt E, Verberne S, Koster C. Text representations for patent classification[J]. Computational Linguistics, 2013, 39(3): 755-775.

[35] Li Xin, Chen Hsinchun, Zhang Zhu, et al. Managing knowledge in light of its evolution process:An empirical study on citation network-based patent classification[J]. Journal of Management Information Systems, 2009, 26(1): 129-153.

[36] Richter G, Macfarlane A. The impact of metadata on the accuracy of automated patent classification[J]. World Patent Information, 2005, 27(1): 13-26.

[37] Liu Duenren, Shih Mengjung. Hybrid-patent classification based on patent-network analysis[J]. Journal of the American Society for Information Science and Technology, 2011, 62(2):246-256.

[38] Mathiassen H, Ortiz-Arroyo D. Automatic categorization of patent applications using classifier combinations[C] //Proceedings of the 7th International Conference on Intelligent Data Engineering and Automated Learning. Berlin: Springer-Verlag, 2006: 1039-1047.

[39] Loh H, He Cong, Shen Lixiang. Automatic classification of patent documents for TRIZ users[J]. World Patent Information,2006, 28(1): 6-13.

[40] He Cong, Loh H. Pattern-oriented associative rule-based patent classification[J]. Expert Systems with Applications, 2010, 37(3): 2395-2404.

[41] 李红,陈少龙. 基于社会网络分析的智能手机专利发明人合作网络演化研究[J]. 科技管理研究, 2013(20): 157-160.

[42] 栾春娟. 基于专利共现的全球太阳能技术网络及关键技术演进分析[J]. 情报学报, 2013, 32(1): 68-79.

[43] 温芳芳. 基于社会网络分析的专利合作模式研究[J]. 情报杂志, 2013, 32(7): 119-123.

[44] 向希尧, 蔡虹, 裴云龙. 跨国专利合作网络中3种接近性的作用[J]. 管理科学, 2010, 23(5): 43-52.

[45] 罗立国,余翔,周力虹. 基于专利许可网络的985高校知识流动能力研究[J]. 管理学报, 2013, 10(3): 458-462.

[46] Verspagen B. Mapping technological trajectories as patent citation networks:A study on the history of fuel cell research[J]. Advances in Complex Systems, 2007, 10(1): 93-115.

[47] 许琦. 基于专利引证网络的技术范式分析——以半导体制造领域为例[J]. 图书情报工作, 2013, 57(4): 112-119.

[48] Lin Yan, Chen Jian, Chen Yan. Backbone of technology evolution in the modern era automobile industry:An analysis by the patents citation network[J]. Journal of Systems Science and Systems Engineering, 2011, 20(4): 416-442.

[49] Choi S, Yoon Y, Kim K, et al. SAO network analysis of patents for technology trends identification:A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells[J]. Scientometrics, 2011, 88(3):863-883.

[50] Park H, Yoon J, KIM K. Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining[J]. Scientometrics, 2013, 97(3): 883-909.

[51] Yoon J, Choi S, KIM K. Invention property-function network analysis of patents:A case of silicon-based thin film solar cells[J]. Scientometrics, 2011, 86(3):687-703.

[52] Kim H, Song J. Social network analysis of patent infringement lawsuits[J]. Technological Forecasting & Social Change, 2013, 80(5): 944-955.

[53] 任声策, 尤建新. 中国专利生存期:基于中国在美专利数据的实证[J]. 管理工程学报, 2012, 26(4): 77-83.

[54] 郑贵忠, 刘金兰. 基于生存分析的专利有效模型研究[J]. 科学学研究, 2010, 28(11): 1677-1683.

[55] 周瑞芳, 禹建丽. 国内专利申请受理情况时间序列的GARCH模型及预测[J]. 中原工学院学报, 2008, 19(3): 31-35.

[56] 饶旻,林友明,郭红. 专利申请与授权量的时间序列分析[J]. 运筹与管理, 2007, 16(6): 157-161.

[57] Hidalgo A, Gabaly S. Use of prediction methods for patent and trademark applications in Spain[J]. World Patent Information, 2012, 34(1): 19-29.

[58] 马军杰, 尤建新, 卢锐. 改进小波神经网络下的我国发明专利授权数量预测[J]. 科技进步与对策, 2013, 30(4): 121-123.

[59] 王贤文, 徐申萌, 彭恋,等. 基于专利共类分析的技术网络结构研究:1971-2010[J]. 情报学报, 2013, 32(2): 198-205.

[60] Ernst H. Patent information for strategic technology management[J]. World Patent Information, 2003, 25(3): 233-242.

[61] 翟东升, 蔡万江, 陈晨, 等. 基于MapReduce构建专利技术功效图的研究[J]. 情报杂志, 2013, 32(6): 29-33.

[62] Yoon B, Park Y. A text-mining-based patent network: Analytical tool for high-technology trend[J]. Journal of High Technology Management Research, 2004, 15(1): 37-50.

[63] 刘玉琴, 朱东华, 吕琳. 基于文本挖掘技术的产品技术成熟度预测[J]. 计算机集成制造系统, 2008, 14(3): 506-510.

[64] Daim T, Iskin I, Li Xin, et al. Patent analysis of wind energy technology using the patent alert system[J]. World Patent Information, 2012, 34(1): 37-47.

[65] Leydesdorff L, Bornmann L. Mapping (USPTO) patent data using overlays to Google Maps[J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1442-1458.

[66] Inoue H, Souma W, Tamada S. Spatial characteristics of joint application networks in Japanese patents[J].Physica A:Statistical Mechanics and its Applications,2007,383(1):152-157.

文章导航

/