知识组织

基于N-IKOS自动分类的实证研究

  • 王兴兰 ,
  • 宋文
展开
  • 1. 重庆医科大学图书馆;
    2. 中国科学院文献情报中心
王兴兰,重庆医科大学图书馆助理馆员,E-mail:wangxinglan@mail.las.ac.cn;宋文,中国科学院文献情报中心研究员.

收稿日期: 2014-10-08

  修回日期: 2014-12-05

  网络出版日期: 2014-12-20

The Empirical Study on Automatic Classification Based on N-IKOS

  • Wang Xinglan ,
  • Song Wen
Expand
  • 1. library of Chongqing Medical University, Chongqing 400016;
    2. National Science Library of Chinese Academy of Sciences, Beijing 100190

Received date: 2014-10-08

  Revised date: 2014-12-05

  Online published: 2014-12-20

摘要

指出大数据时代的到来使自动分类再次受到人们的关注.总结现有的自动分类方法,介绍中国科学院文献情报中心的KOS引擎项目中的集成知识组织体系.在此基础上,改进BP神经网络算法,提出N-IKOS自动分类模型.最后,通过实验检验基于N-IKOS分类的准确性,通过基于BP神经网络的分类实验、基于KOS引擎的分类实验和基于N-IKOS的分类实验比较新模型在自动分类中的优劣.实验结果表明:该研究改进了原有的KOS引擎分类,可为自动分类领域提供新的思路.

本文引用格式

王兴兰 , 宋文 . 基于N-IKOS自动分类的实证研究[J]. 图书情报工作, 2014 , 58(24) : 106 -112 . DOI: 10.13266/j.issn.0252-3116.2014.24.017

Abstract

Automatic classification is taken attention again with the coming of big data.The paper summaries the methods of automatic classification,and introduces the integrated knowledge organization system in KOS engine project of National Science Library.Then,it improves the BP neural network,and raises a pattern of N-IKOS automatic classification.In the end,the paper tests the accuracy of N-IKOS automatic classification by experiment,and compares the merits and drawbacks of the new model with the experiments of automatic classification based on BP neural network KOS engine and N-IKOS.It improves the category of the KOS engine classification,so as to provide the new thought for automatic classification research.

参考文献

[1] Luhn H P. A statistical approach to mechanized encoding and searching of literary information[J].IBM Journal of Research and Development, 1957, 1(4): 309-317.
[2] Maron M E, Kuhns J L.On relevance, probabilistic indexing and information retrieval[J].Journal of the ACM (JACM), 1960, 7(3): 216-244.
[3] Salton G.Automatic processing of foreign language documents[J].Journal of the American Society for Information Science, 1970, 21(3): 187-194.
[4] 侯汉清.分类法的发展趋势简论[J].情报科学, 1981(1): 58-63, 30.
[5] Sebastiani F.Machine learning in automated text categorization[J].ACM Computing Surveys (CSUR), 2002, 34(1): 1-47.
[6] Yang Yiming, Liu Xin.A re-examination of text categorication methods[C]//Proceeding of 22nd Annual International SIGIR conference on Research and development in information retrieval.New York:ACM, 1999:42-49.
[7] Shafer K E.Automatic subject assignment via the scorpion system[J].Journal of Library Administration, 2001, 34(1-2):187-189.
[8] Wätjen H J.GERHARD-automaticsches sammeln, klassifizieren und indexieren von wissenschaftlich relevaten informationsres sourcen im deutschen World Wide Web.B.I.T.online:Zeitschrift für Bibliothek[J].BIT Online, 1999, 1(4):279-290.
[9] Möller G, Carstensen K U, Diekmann B, et al.Automatic classification of the world-wide Web using the Universal Decimal Classification[C].[2014-12-07].http://www.researchgate.net.sci-hub.org/publication/2501213_Automatic_Classification_of_the_World-Wide_Web_using_the_Universal_Decimal_Classification/file/60b7d524a90596c1f0.pdf.
[10] Song M H, Lim S Y, Kang D J, et al.Automatic classification of Web pages based on the concept of domain ontology[C]//12th Asia-Pacific (APSEC'05).Piscataway:IEEE, 2005.
[11] 王兴兰, 宋文.基于知识组织体系的自动分类研究[J].图书馆论坛, 2013, 31(176):8-13.
[12] Prabowo R, Jackson M, Burden P, et al.Ontology-based automatic classification for the web pages:design, implementation and evaluation[C]//Proceedings: the 3rd International Conference on Web Information Systems Engineering.Piscataway:IEEE, 2002:182-191.
[13] Campos L M, Romero A E.Bayesian network models for hierarchical text classification from a thesaurus[J].International Journal of Approximate Reasoning, 2009, 50(7):932-944.
[14] 王梅文.本体在元搜索引擎查询结果自动分类中的应用[J].电脑知识与技术(学术交流), 2007, (8):441-443.
[15] 宋文, 刘毅, 张旺强等.基于开放引擎的知识组织服务[J].图书情报工作.2012, 56(18):99-103.

文章导航

/