情报研究

基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例

  • 徐晓艺 ,
  • 杨立英
展开
  • 1. 中国科学院文献情报中心 北京 100190;
    2. 中国科学院大学 北京 100049
徐晓艺(ORCID:0000-0001-6684-727X ),硕士研究生,E-mail:xuxy@mail.las.ac.cn;杨立英(ORCID:0000-0001-5539-9934 ),研究员。

收稿日期: 2014-10-28

  修回日期: 2014-12-20

  网络出版日期: 2015-01-05

Analysis of Disciplinary Knowledge Flows Network Based on Coauthored Papers: A Case of Medicinal Chemistry Discipline

  • Xu Xiaoyi ,
  • Yang Liying
Expand
  • 1. National Science Library, Chinese Academy of Sciences, Beijing 100190;
    2. University of Chinese Academy of Sciences, Beijing 100049

Received date: 2014-10-28

  Revised date: 2014-12-20

  Online published: 2015-01-05

摘要

[目的/意义] 在科研过程中,知识流动的内容是多样的,而学科知识流动是其中一个重要的研究方面。从区别于基于引文的学科知识流动分析角度,从科研合作角度出发,期望从合著论文中分析出因科研合作过程而产生的学科知识流动特征。[方法/过程] 基于合著论文的参考文献的学科分布确定此论文的多学科共现属性,并根据此属性构建合著论文的多学科共现网络,即基于合著论文的学科流动网络。通过网络的整体特征和网络的节点特征两个方面对合著论文的学科流动网络进行特征分析。其中,网络整体特征包括学科流动的广泛性、学科流动的有效性、学科流动的新颖度、学科流动的流通度;网络节点(即学科节点)特征包括学科流动的核心性、学科流动的连续性、学科流动的一致性、学科流动的差异性。[结果/结论] 以"药物化学"学科为例,通过前后5年各个指标的数据对比,得出在科研合作中"药物化学"学科与其他学科之间的流动趋势是逐渐增加的,其流动的质量也是不断提升的,学科间的交流在不断地加深。同时,中美日3个国家在此学科的不同时间段均具有各自不同的表现。运用基于合著论文的学科知识流动网络分析方法能够反映科研合作中"药物化学"学科知识流动的情况,但是需要研究论证此方法在其他学科的应用程度。

本文引用格式

徐晓艺 , 杨立英 . 基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例[J]. 图书情报工作, 2015 , 59(1) : 89 -98 . DOI: 10.13266/j.issn.0252-3116.2015.01.012

Abstract

[Purpose/significance] During the science research process, the content of the knowledge flows is diverse, and the disciplinary knowledge flow is one part of the important research. Distinguished from the disciplinary knowledge flow analysis based on the citations, this paper, from the perspective of research collaboration, analyzed the characteristics of the disciplinary knowledge flows network based on the co-authored papers. [Method/process] Determined the co-authored paper's multidisciplinary co-occurrence property based on its references' disciplines, and then built co-authored papers multidisciplinary co-occurrence network, which is the disciplinary knowledge flows network. The next step was analyzing the basic network characteristics and the disciplinary characteristics by using difference indicators. The basic network features include the extensive, the effectiveness, the novelty and the circulation of the knowledge flows; the disciplinary characteristics include the core, the continuous and the differences of the discipline flow.[Result/conclusion] In the disciplinary knowledge flows network of the medical chemistry discipline, by comparing the data before and after five years, we can know the flowing between the medical chemistry discipline and other disciplines is increasing, and its quality is also rising. And then it compared the different performances of three countries including China, America and Japan, concluding the different disciplines knowledge flowing direction in different time. Based on scientific cooperation, the disciplinary knowledge flow network analysis method can reflect the flowing situation of the Medicinal Chemistry discipline. But it needs to consider the extent of the application in other discipline.

参考文献

[1] 华连连.张悟移.知识流动及相关概念辨析[J].情报杂志,2010(10):112-117.
[2] 张树良.研究领域的多学科属性度量及多学科结构揭示[D].北京:中国科学院文献情报中心,2008.
[3] 赵君,廖建桥.科研合作研究综述[J].科学管理研究,2013,31(2):117-120.
[4] Rousseau R. Robert fairthorne and the empirical powerlaws [J]. Journal of Documentation, 2005, 61(2): 194- 205.
[5] Liu Yuxian, Rousseau R. Knowledge diffusion through publications and citations: A case study using ESI-fields as unit of diffusion[J].Journal of the American Society for Information Science and Technology, 2010, 61(2): 340- 351.
[6] Rowlands I. Journal diffusion factor: A new approach to measuring research influence [J]. Aslib Proceedings, 2002, 54(2):77- 84.
[7] Frandsen T F. Journal diffusion factors: A measure of diffusion? [J]. Aslib Proceedings, 2004, 56(1): 5- 11.
[8] Egghe L. Journal diffusion factors and their mathematical relations with the number of citations and with the impact factor[ M]//Ingwersen P, Larsen B. Proceedings of ISSI 2005.Stockholn:Karolinska University Press, 2005: 109- 120.
[9] Porter A L, Chubin D E. An indicator of cross-disciplinary research [ J]. Scientometrics, 1985, 8(3- 4): 161- 176.
[10] Brillouin L. Science and information theory[ M]. New York:Academic Press, 1956: 125.
[11] 王亮.张庆普.基于引文网络的知识流动过程与机制研究[J].哈尔滨工业大学学报(社会科学版),2014,16:110-116.
[12] 林莉. 科研论文合著网络结构与合作关系研究[D]. 长春:吉林大学, 2010.
[13] Rafols I,Meyer M.Diversity and network coherence as indicators of interdisciplinarity: Case studies inbionano science.[J].Scientometrics,2010,82(2):263-287.
[14] 平亮,宗利永.基于社会网络中心性分析的微博信息传播研究——以Sina微博为例[J].图书情报知识,2010(6):92-97.
[15] 谢守美.知识生态系统知识流动的生态学分析[J].图书馆学研究,2009(5):7-10.

文章导航

/