收稿日期: 2014-12-01
修回日期: 2015-01-05
网络出版日期: 2015-01-20
基金资助
本文系2011年度全国教育科学规划教育部青年项目"基于知识图谱的国际高等教育研究前沿及其演进分析"(项目编号:EIA110369)研究成果之一。
Analysis of Construction and Characteristics of Scientific Collaboration Network of Universities—Based on the Data of "211" Universities
Received date: 2014-12-01
Revised date: 2015-01-05
Online published: 2015-01-20
[目的/意义]我国地域辽阔、高校众多,了解不同高校之间的科学合作现状,对于推进"2011计划"有着重要意义。以SCI和SSCI数据库中的全体数据作为数据来源,针对传统科学计量学方法和现有软件无法处理海量数据的问题,开发出全新的数据处理方法,用于实现对不同机构之间的论文合作分析。[方法/过程]以我国111所"211"高校作为研究对象,对主要研究型大学之间以SCI和SSCI论文为代表的高水平论文合作情况进行定量研究,计算各高校在论文合作网络中的中介中心性并排序,进而绘制合作网络图谱。[结果/结论]我国高校科研论文合作的现状与全貌是科研实力较强的"985"综合性高校排序靠前,而学科专业性较强、地理位置偏僻的高校排序靠后;我国目前的大学科学论文合作整体存在以地理聚类为主、学科聚类为辅的合作关系特征。这一特征为科研管理和教育管理工作提供了启示,即:既要发挥"985"高校的领军作用,也要发挥区域中优势高校的增长极作用,在"2011计划"的学科框架下实现广泛交流。
关键词: 科学论文; 合作网络; "211"高校; Web of Science
柴玥 , 刘趁 , 王贤文 . 我国高校科研合作网络的构建与特征分析—基于“211”高校的数据[J]. 图书情报工作, 2015 , 59(2) : 82 -88 . DOI: 10.13266/j.issn.0252-3116.2015.02.013
[Purpose/significance] There are vast territories and numerous universities in China. It has important significance to understand the scientific cooperation among universities to promote the "2011 project". Based on all the data of SCI and SSCI database, this paper develops a new method of process data to solve the problem that in the traditional scientific metrology and the existing software can't deal with the huge amounts of data. This method is used to analyze the cooperation among different institutions.[Method/process] Taking all the "211" universities as the research object, this paper calculates, ranks and maps the cooperation network by quantitative research of SCI and SSCI high level papers collaboration of these universities. [Result/conclusion] By using social network analysis to analyze the position of universities in the thesis cooperation network from the macroscopic angle, this paper summarizes the present situation of the major universities in China: the "985"comprehensive universities have strong research capabilities rank higher while the remote universities which has strong disciplines rank lower; geographical proximity is the main elements, while disciplinary proximity secondary in the universities' collaboration. The characteristic provide the revelation to scientific and education management: "985"universities should play the leading role while the universities which have the regional advantage play the growth pole role; communicate widely under the "2011 project" framework of discipline.
[1] Han Pu, Shi Jin, Li Xiaoyan, et al. International collaboration in LIS: Global trends and networks at the country and institution level[J]. Scientometrics, 2014, 98(1): 53-72.
[2] Wang Xianwen, Xu Shenmeng, Wang Zhi, et al. International scientific collaboration of China: Collaborating countries, institutions and individuals[J]. Scientometrics, 2013, 95(3): 885-894.
[3] He Tianwei. International scientific collaboration of China with the G7 countries[J]. Scientometrics, 2009, 80(3): 571-582.
[4] Narin F, Stevens K, Whitlow E. Scientific cooperation in Europeand the citation of multidomestically authored papers[J]. Scientometrics,1991, 21(3):313-323.
[5] Lancho Barrantes B S, Bote G, Vicente P, et al. Citation flows in the zones of influence of scientific collaborations[J]. Journal of the American Society for Information Science and Technology, 2012, 63(3): 481-489.
[6] Franceschet M. Collaboration in computer science: A network science approach[J]. Journal of the American Society for Information Science and Technology, 2011, 62(10): 1992-2012.
[7] Brner K, Penumarthy S, Meiss M, et al. Mapping the diffusion of scholarly knowledge among major US research institutions[J]. Scientometrics, 2006, 68(3): 415-426.
[8] 王贤文, 丁堃, 朱晓宇. 中国主要科研机构的科学合作网络分析——基于 Web of Science 的研究[J]. 科学学研究, 2011,28 (12):1806-1812.
[9] Kretschmer H. Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web[J]. Scientometrics, 2004, 60(3): 409-420.
[10] Newman M E J. Who is the best connected scientist? A study of scientific coauthorship networks[M]//BenNaim E, Frauenfelder H, Toroczkai. Z Complex Networks.Berlin:Springer Berlin Heidelberg, 2004: 337-370.
[11] Hou Haiyan, Kretschmer H, Liu Zeyuan. The structure of scientific collaboration networks in scientometrics[J]. Scientometrics, 2008, 75(2): 189-202.
[12] Wang Xianwen, Xu Shenmeng, Liu Di, et al. The role of Chinese-American scientists in China-US scientific collaboration:A study in nanotechnology[J]. Scientometrics, 2012, 91(3): 737-749.
[13] Bozeman B, Fay D, Slade C P. Research collaboration in universities and academic entrepreneurship:The-state-of-the-art[J]. The Journal of Technology Transfer, 2013, 38(1): 1-67.
[14] 梁立明,沙德春.985高校校际科学合作的强地域倾向[J].科学学与科学技术管理,2008,(11):112-116.
[15] 赵蓉英,温芳芳.科研合作与知识交流[J].图书情报工作,2011,55(20):6-11.
/
〈 | 〉 |