收稿日期: 2015-04-07
修回日期: 2015-05-10
网络出版日期: 2015-05-20
基金资助
本文系国家社会科学基金项目"网页内容分析与挖掘的企业竞争情报方法研究"(项目编号:10BTQ034)研究成果之一。
Dynamic Network Data Mining Progress and Prospects
Received date: 2015-04-07
Revised date: 2015-05-10
Online published: 2015-05-20
黄晓斌 , 张兴旺 . 网络动态数据挖掘研究进展与展望[J]. 图书情报工作, 2015 , 59(10) : 6 -13 . DOI: 10.13266/j.issn.0252-3116.2015.10.001
[Purpose/significance] Traditional data mining technology is difficult to effectively analyze the mass, high dimensional, dynamic network data, which becomes the main technical bottleneck in the field of business intelligence, decision analysis and knowledge discovery. Dynamic network data mining can effectively solve the bottleneck.[Method/process]By combing the theory and application of research results, the formation, development process and trends of dynamic network data mining research are summarized.[Result/conclusion]The study finds that the future research trends include the process of mutation research NDDM issues, integration NDDM and information science, social networking dynamic evolution model to study changes in the timing and NDDM cooperative network of granular computing problems.
[1] Viktor M S,Henneth C.大数据时代——生活、工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2012.
[2] Powell J H, Bradford J P. Targeting intelligence gathering in a dynamic competitive environment[J]. International Journal of Information Management,2000,20(3):181-195.
[3] 张玉峰,吴金红,王翠波.基于Web结构挖掘的网络动态竞争情报采集研究[J].中国图书馆学报,2007(6):62-64,95.
[4] 张玉峰,部先永,晏创业.动态竞争情报及其采集基础[J].中国图书馆学报,2006(6):28-31.
[5] Glynis D,Salim H,Youssif A N. et al. Resilient?Dynamic data driven application systems[J/OL].[2015-03-25].http://www.sciencedirect.com/science/article/pii/S187705091300505X.
[6] National Science Foundation.DDDAS: Dynamic data driven applications systems[R/OL].[2014-04-05]. http://www.nsf.gov/cise/cns//dddas/.
[7] 陈封能,斯坦巴克,库马尔.数据挖掘导论[M].2版. 范明,范宏建,等译.北京:人民邮电出版社,2011.
[8] 韩家炜,坎伯,裴健,等.数据挖掘概念与技术[M]. 范明,孟小峰,译.北京:机械工业出版社,2012.
[9] Liu Bing. Web数据挖掘[M]. 俞勇,薛贵荣,韩定一,译.北京:清华大学出版社, 2009.
[10] 倪志伟,倪丽萍,刘慧婷,等.动态数据挖掘[M].北京:科学出版社,2010.
[11] 宋爱波,董逸生,吴文明,等. Web挖掘研究综述[J].计算机科学,2001,28(11):13-16.
[12] 张兴旺.图书馆大数据体系构建的学术环境和战略思考[J].情报资料工作,2013(2):12-17.
[13] Manyika J, Chui M, Brown B,et al. Big data: The next frontier for innovation, competition, and productivity[R/OL]. [2015-03-11]. http://www.fujitsu.com/downloads/SVC/fla/03_Michael_Chui.pdf.
[14] The White House. Obama administration unveils"big data" initiative: Announces $200 million in new R&D investments[EB/OL]. [2015-03-11]. http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release.pdf.
[15] 初景利,孔青青,栾冠楠.嵌入式学科服务研究进展[J].图书情报工作,2013,57(22):11-17.
[16] Zhu Yunyun, Shasha D.Statstream: Statistical monitoring of thousands of data streams in real time[C].//Proceedings of the 28th International Conference on Very Large Data Bases.HongKong:SAR,2002:358-369.
[17] Boonet P, Gehrke J,Seshadri P.Towards sensor database systems[C]//Proceedings of the 2nd Internetational Conference on Mobile Data Management. HongKong:Springer Berlin Heidelberg,2001:3-14.
[18] Lukasz G,Tamer M. Data stream management issues-a survey[J/OL]. [2015-03-13].https://cs.uwaterloo.ca/~tozsu/ddbms/publications/stream/streamsurvey.pdf.
[19] 张玉峰,何超.基于Web评论挖掘的动态竞争情报分析研究(上)——问题分析与模型构建[J].情报理论与实践,2012,35(6):63-66.
[20] 冯维杨. 面向任务的动态竞争情报组织结构模型分析[J].情报学报,2002,21(4):486-490.
[21] Henzinger M R, Raghavan P, Rajagopalam S.Computing on data streams[OL].[2015-03-13]. http://www.eecs.harvard.edu/~michaelm/E210/datastreams.pdf.
[22] Han Jiawei, Kamber M. Data mining: Concepts and techniques (second edition)[M]. San Francisco:Morgan Kaufmann, 2006:467-589.
[23] Arvind A,Brian B,Shivnath B, et al. STREAM: the Stanford stream data manager[OL].[2015-03-22]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.6180&rep=rep1&type=pdf.
[24] Abadi D J,Carney D,Cetintemel U. Aurora:A new model and architecture for data stream management[J]. The VLDB Journal,2003,12(2):120-139.
[25] Sailesh K,Sirish C,Owen C, et al. Telegraph CQ: An architectural status report[OL].[2015-03-13]. http://www.mathcs.emory.edu/~cheung/papers/StreamDB/Systems/tcqdebulletin.pdf.
[26] 倪丽萍,倪志伟,吴昊,等.基于分形维数的数据挖掘技术研究综述[J].计算机科学,2008,35(1):187-189.
[27] Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms. London: Springer-Verlag, 1993: 69-84.
[28] Facutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Mineapolis:ACM Press, 1994: 419- 429.
[29] Li Yufeng. Guo Tianyou, Zhou Zhihua. Combo-dimensional kernels for graph classification[J]. Computer Science,2009,32(5):946-952.
[30] Huang Chao,Huang Lili, Han Tingting. Financial time series forecasting based on wavelet kernel support vector machine[C]//Proceedings of 2012 Eighth International Conference on Natural Computation (ICNC),2012:79-83.
[31] 王快妮,钟萍,赵耀红.鲁棒SVR在金融时间序列预测中的应用[J].计算机工程,2011(15):155-157,163.
[32] 李祥飞,张再生.基于误差同步预测的SVM金融时间序列预测方法[J].天津大学学报(自然科学与工程技术版),2014(1):86-94.
[33] 罗洪奔.基于灰色-ARIMA的金融时间序列智能混合预测研究[J].财经理论与实践,2014(2):27-34.
[34] 田志宏,王佰玲,张伟哲,等.基于上下文验证的网络入侵检测模型[J].计算机研究与发展,2013(3):498-508.
[35] Sindhu K K, Meshram B B. Digital forensics and cyber crime datamining[J].Journal of Information Security,2012,3(3):196-201.
[36] EELD. Evidence extraction and link discovery[EB/OL].[2015-03-15]. http://w2.eff.org/Privacy/TIA/eeld.php.
[37] 张立振.快速滤波本征模态信息分解及其在海洋数据分析中的应用[D].青岛:中国海洋大学,2006.
[38] Constantinos A, Haris N K, George Y. Dynamic data-driven local traffic state estimation and prediction[J].Transportation Research Part C: Emerging Technologies,2013,34(9):89-107.
[39] 王志武,丁国清,颜国正,等.多分辨率多传感器动态数据的融合和应用[J].上海交通大学学报,2002,36(7):953-956.
[40] Huang N E, Zhang Shen, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[OL].[2015-03-22].http://read.pudn.com/downloads150/ebook/649877/Hilbert.pdf.
[41] 邬伦,马修军,田原.基于场模型的空间动态数据建模及空间动态模型语言设计[J].地理学与国土研究,2000(4):73-76,96.
[42] 黄琪,柴干,孙莹莹,等.面向高速公路交通调度的动态数据融合[J].公路交通科技,2009(3):130-134.
[43] 杨广斌,刘鹏举,唐小明,等.动态数据驱动的林火模拟系统设计与实现——以北京市森林防火系统为例[J].林业资源管理,2011(2):83-89.
[44] 高心丹.林火蔓延的动态数据驱动仿真理论及方法的研究[D].哈尔滨:东北林业大学,2012.
[45] 冉鹏.基于动态数据挖掘的电站热力系统运行优化方法研究[D].北京:华北电力大学,2012.
[46] 孙想,李文华,唐建文,等.动态数据采集在继电器电参数测试中的应用[J]. 低压电器,2010(13):23-25,64.
[47] 韩辉,刘艺,时海芳,等.面向低温镀铁过程质量控制的动态数据挖掘方法[J].煤矿机械,2008,29(1):57-59.
[48] Thom R. Structural stability and morphogenesis[M].New York: Westview Press, 1994.
[49] Harrison C W. Identity and control: A structural theory of social action[M].Princeton:Princeton University Press,1992.
[50] Barabási A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A: Statistical Mechanics and Its Applications,2002,311(3):590-614.
[51] 李道国,苗夺谦,张东星,等.粒度计算研究综述[J].计算机科学,2005,32(9):1-12.
/
〈 | 〉 |