收稿日期: 2015-05-06
修回日期: 2015-05-19
网络出版日期: 2015-06-05
基金资助
本文系国家社会科学基金项目“智慧图书馆理论与系统实践研究”(项目编号:13XTQ009)研究成果之一。
Research on User Preference Retrieval System of University Library Based on Machine Learning
Received date: 2015-05-06
Revised date: 2015-05-19
Online published: 2015-06-05
沈敏 , 杨新涯 , 王楷 . 基于机器学习的高校图书馆用户偏好检索系统研究[J]. 图书情报工作, 2015 , 59(11) : 143 -148 . DOI: 10.13266/j.issn.0252-3116.2015.11.020
[Purpose/significance] For the information overload problem of traditional retrieval system in university library under big data environment, an online learning method is proposed to provide users personalized preference retrieval services. [Method/process] By extracting users' characteristics from big data of their retrieval behaviors, and the supervising machine learning method, this paper learns an adaptive retrieval model which can synchronize changes with the users' preference online, predicts users' selection probability for the literature and optimizes the sorting order of the retrieval results. [Result/conclusion] This paper designs a user preference retrieval prototype system, introduces the workflow of user preference retrieval system, makes a comparative analysis on the effectiveness, and objectively evaluates the system.
[1] 栾旭伦. 大数据环境下高校图书馆个性化信息服务系统研究[J]. 图书馆学刊, 2014(8): 118-121.
[2] 官思发, 朝乐门. 大数据时代信息分析的关键问题、挑战与对策[J]. 图书情报工作, 2015, 59(3): 12-18.
[3] 来红梅. 大数据时代图书馆信息服务面临的挑战与对策[J]. 图书馆学刊, 2014(3): 91-93.
[4] Tan J S F, Lu E H C, Tseng V S, et al. Preference-oriented mining techniques for location-based store search [J]. Knowledge and Information Systems, 2013, 34(1): 147-169.
[5] 何军, 刘业政. 基于社交关系和影响力的在线社交网络用户兴趣偏好获取方法研究[J]. 情报学报, 2014, 33(7): 730-739.
[6] 史艳翠,孟祥武,张玉洁,等. 一种上下文移动用户偏好自适应学习方法[J]. 软件学报,2012(10):2533-2549.
[7] Bian Jiang, Long Bo, Li Lihong, et al. Exploiting user preference for online learning in Web content optimization systems[EB/OL].[2015-04-18]. http://dl.acm.org/citation.cfm?id=2493259.
[8] 桑艳艳, 刘培刚, 李勇. 拟合用户偏好的个性化搜索[J]. 情报科学, 2008(8):1248-1251.
[9] Leung K W T, Lee D L, Ng W, et al. A framework for personalizing Web search with concept-based user profiles[EB/OL].[2015-04-18]. http://www.cs.ust.hk/~wilfred/paper/toit12.pdf.
[10] Mandl T, Womser H C. A framework for long-term learning of topical user preferences in information retrieval[J]. New Library World, 2004, 105: 184-195.
[11] 蔡淑琴,胡慕海,叶波,等.情境化推荐中基于超图模式的用户偏好漂移识别研究[J].情报学报,2011,30(8):802-811.
[12] Marin L, Isern D, Moreno A, et al. On-line dynamic adaptation of fuzzy preferences [J]. Information Sciences, 2013, 220(20): 5-21.
[13] 胡雨成, 于俊清, 黄贤强,等. 足球视频搜索引擎中的用户偏好挖掘[J]. 中国图象图形学报, 2014, 19(4): 622-629.
[14] 陆伟, 张晓娟. 基于主题与用户偏好分析的查询推荐研究[J]. 情报学报, 2012, 31(12): 1252-1258.
[15] Agosti M, Crivellari F, Nunzio G M D, et al. Understanding user requirements and preferences for a digital library Web portal [J]. International Journal on Digital Libraries, 2010, 11(4): 225-238.
[16] Mark A P. Student preferences in library website vocabulary[J]. Library Philosophy and Practice, 2011(6):1-17.
[17] Carlos A F, Roberto W, Renato F. Custom ordering on digital library information retrieval[EB/OL].[2015-04-18]. http://dl.acm.org/citation.cfm?id=1858505.
[18] Bernadetta M, Ngoc T N. Tuning user profiles based on analyzing dynamic preference in document retrieval systems[J]. Multimedia Tools and Applications, 2013, 65(1): 93-118.
[19] Claus D, Johann E. Efficient top-k retrieval for user preference queries[C]//SAC. Proceedings of the 2011 ACM Symposium on applied computing. Taiwan:ACM. 2011: 1045-1052.
[20] Li Ming, Li Hang, Zhou Zhihua. Semi-supervised document retrieval[J]. Information Processing and Management, 2009, 45(3): 341-355.
[21] Sun Yang, Li Huajing, Councill I G, et al. Measuring user preference changes in digital libraries[C]//CIKM. Proceeding of the 17th ACM Conference on Information and Knowledge Management. California:ACM, 2008: 1497-1498.
/
〈 |
|
〉 |