情报研究

网络健康社区中的主题特征研究

  • 金碧漪 ,
  • 许鑫
展开
  • 华东师范大学信息学系 上海 200241
金碧漪(ORCID:0000-0003-2286-6529),硕士研究生;许鑫(ORCID:0000-0001-7020-3135),副教授,博士,E-mail:xxu@infor.ecnu.edu.cn。

收稿日期: 2015-04-22

  修回日期: 2015-05-23

  网络出版日期: 2015-06-20

Research on Theme Features in Online Health Community

  • Jin Biyi ,
  • Xu Xin
Expand
  • Department of Information Science, East China Normal University, Shanghai 200241

Received date: 2015-04-22

  Revised date: 2015-05-23

  Online published: 2015-06-20

摘要

[目的/意义] 探究不同类型网络社区中健康主题特征分布,促使各网站平台能够更好地提供在线健康信息服务。[方法/过程] 以糖尿病为例,选取来自健康论坛的社会化标签和社会化问答社区的问答记录作为研究对象;通过数据编码和文本处理的方法,得到八大类主题,并比较两种网络社区中该八大主题分布情况的异同。[结果/结论] 两种网络社区中糖尿病主题冷热分布大体趋于一致。在最为用户所关注的主题上,两类社区各有侧重,分别是“诊断和检查”、“社会生活”。以上探讨和发现对在线健康信息服务质量的提升有诸多启示。

本文引用格式

金碧漪 , 许鑫 . 网络健康社区中的主题特征研究[J]. 图书情报工作, 2015 , 59(12) : 100 -105 . DOI: 10.13266/j.issn.0252-3116.2015.12.015

Abstract

[Purpose/significance] This paper aims to explore health themes features distribution in different types of online community, and prompt websites to provide better online health information services.[Method/process] Taking Diabetes as an example, this paper chooses the social tags from health forums and the Q&A records from social Q&A platforms as the research object. It gets eight themes by the methods of data coding and text processing, and compares the similarities and differences of the distribution of eight major themes in two kinds of online health communities.[Result/conclusion] The result shows that the distribution of the hot or cold themes from two online communities tend to be consistent, but the theme in most concern differs from each other. All these finds are benefit to improve online health information service.

参考文献

[1] Fox S. The social life of health information, 2011[EB/OL].[2014-06-20]. http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/.
[2] Arden M A, Duxbury A M S, Soltani H. Responses to gestational weight management guidance:A thematic analysis of comments made by women in online parenting forums[J/OL].[2015-03-10].http://www.biomedcentral.com/1471-2393/14/216.
[3] Coulson N S. Sharing, supporting and sobriety: A qualitative analysis of messages posted to alcohol-related online discussion forums in the United Kingdom[J]. Journal of Substance Use, 2014, 19(1-2): 176-180.
[4] Attard A, Coulson N S. A thematic analysis of patient communication in Parkinson's disease online support group discussion forums[J]. Computers in Human Behavior, 2012, 28(2): 500-506.
[5] Rodgers S, Chen Qimei. Internet community group participation: Psychosocial benefits for women with breast cancer[J/OL].[2015-03-10].http://onlinelibrary.wiley.com/doi/10.1111/j.1083-6101.2005.tb00268.x/full.
[6] 吕英杰. 网络健康社区中的文本挖掘方法研究[D]. 上海:上海交通大学, 2013.
[7] Zhang Yang. Contextualizing consumer health information searching: An analysis of questions in a social Q&A community[C/OL].[2015-04-02].http://dl.acm.org/citation.cfm?id=1883023.
[8] Chiu M H P, Wu C C. Integrated ACE model for consumer health information needs: A content analysis of questions in Yahoo! Answers[J]. Proceedings of the American Society for Information Science and Technology, 2012, 49(1): 1-10.
[9] Oh J S, He D, Jeng W, et al. Linguistic characteristics of eating disorder questions on Yahoo! Answers-Content, style, and emotion[J]. Proceedings of the American Society for Information Science and Technology, 2013, 50(1): 1-10.
[10] Zhang Jin, Zhao Yiming. A user term visualization analysis based on a social question and answer log[J]. Information Processing & Management, 2013, 49(5): 1019-1048.
[11] Griffiths T L, Steyvers M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences, 2004, 101(suppl 1): 5228-5235.
[12] He Xiaofeng, Ding C H Q, Zha Hongyuan, et al. Automatic topic identification using webpage clustering[EB/OL].[2015-03-12].http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=989518&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D989518.
[13] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
[14] 石晶, 范猛, 李万龙. 基于 LDA 模型的主题分析[J]. 自动化学报, 2009, 35(12): 1586-1592.
[15] 张晨逸, 孙建伶, 丁轶群. 基于 MB-LDA 模型的微博主题挖掘[J]. 计算机研究与发展, 2015, 48(10): 1795-1802.
[16] 杨星, 李保利, 金明举. 基于 LDA 模型的研究领域热点及趋势分析[J]. 计算机技术与发展, 2012, 22(10): 66-69.
[17] 骆卫华, 于满泉, 许洪波, 等. 基于多策略优化的分治多层聚类算法的话题发现研究[J]. 中文信息学报, 2006, 20(1): 29-36.
[18] Gazan R. Social q&a[J]. Journal of the American Society for Information Science and Technology, 2011, 62(12): 2301-2312.
[19] Kim S, Oh S. Users' relevance criteria for evaluating answers in a social Q&A site[J]. Journal of the American Society for Information Science and Technology, 2009, 60(4): 716-727.
[20] Chuang J, Hsiao O, Wu P L, et al. DiabeticLink: An integrated and intelligent cyber-enabled health social platform for diabetic patients[M/OL].[2015-04-02].http://link.springer.com/chapter/10.1007/978-3-319-08416-9_7.
[21] 赵一鸣, 张进, 黎苑楚. 基于多维尺度模型的潜在主题可视化研究[J]. 情报学报, 2014, 33(1): 45-54.
[22] Evangelista L S, Strmberg A, Westlake C, et al. Developing a Web-based education and counseling program for heart failure patients[J]. Progress in Cardiovascular Nursing, 2006, 21(4): 196-201.
[23] Keselman A, Logan R, Smith C A, et al. Developing informatics tools and strategies for consumer-centered health communication[J]. Journal of the American Medical Informatics Association, 2008, 15(4): 473-483.

文章导航

/