专题:非遗资源信息组织研究(许鑫副教授组织)

融合关联数据和分众分类的徽州文化数字资源多维度聚合研究

  • 王伟 ,
  • 许鑫
展开
  • 1. 安徽师范大学图书馆 芜湖 241000;
    2. 华东师范大学商学院 上海 200241
王伟(ORCID:0000-0001-9041-3148),馆员

收稿日期: 2015-06-15

  修回日期: 2015-06-25

  网络出版日期: 2015-07-20

Design and Application of Multi-dimensional Aggregation Based on Huizhou Culture Digital Resources

  • Wang Wei ,
  • Xu Xin
Expand
  • 1. Libray of Anhui Normal University, Wuhu 241003;
    2. Business School, East China Normal University, Shanghai 200241

Received date: 2015-06-15

  Revised date: 2015-06-25

  Online published: 2015-07-20

摘要

[目的/意义] 徽州文化内容丰富,门类众多,其数字资源呈现出海量、分散、异构、多粒度的特点。因此用户既无法在宏观上准确地把握徽州文化的主线,又不能在微观上清晰地定位徽州文化的细节知识点,从海量的徽州文化数字资源中找到所需要的信息。融合关联数据和分众分类的多维度聚类方法可以较好地解决这一问题。[方法/过程] 在方法上综合关联数据聚合与分众分类聚合的优势,取其所长,试图从宏观与微观上全面展现徽州文化数字资源的知识信息。同时在聚合内容上,实现内容来源多元化的徽州文化数据资源的关联数据聚合,展示基于内容的多维度聚合。[结果/结论] 通过实验,有效展示所收集的徽州文化数字资源的主要知识群落与知识单元细节,将来源异构、内容异构、展现异构的徽文化数字资源有序重组,实现知识库与用户需求的无缝融合,提升用户知识获取体验。

本文引用格式

王伟 , 许鑫 . 融合关联数据和分众分类的徽州文化数字资源多维度聚合研究[J]. 图书情报工作, 2015 , 59(14) : 31 -36,58 . DOI: 10.13266/j.issn.0252-3116.2015.14.004

Abstract

[Purpose/significance] Huizhou culture is abundant and has a long history, but its digital resource presents great amount, dispersion, isomerism and multi-granularity features. Users can not accurately grasp the main line of Huizhou culture at the macro and can not clearly locate detail knowledge of Huizhou culture in the micro, so they can not find the information they need from the mass of digital resources in Huizhou culture.[Method/process] The paper integrates the advantage of linked data aggregation and classification focus aggregation in aggregation method, trying to show the full knowledge of Huizhou culture digital resources information from the macro and micro. Meanwhile we achieve the linked data aggregation from diversified sources Huizhou culture digital resource sources in the aggregation content aspect, showing the multi-dimensional aggregation based on content aspect.[Result/conclusion] We effectively show the main elements of knowledge communities and the detail of knowledge unit of Huizhou culture digital resources from the experiments. We restructure Huizhou culture digital resources from isomerism source, isomerism content and isomerism display. We realize seamless integration of library and user needs, and enhance knowledge acquisition to the user experience.

参考文献

[1] 毕强,尹长余,滕广青,等. 数字资源聚合的理论基础及其方法体系建构[J]. 情报科学,2015(1):9-14,24.
[2] 游毅,成全. 试论基于关联数据的馆藏资源聚合模式[J]. 情报理论与实践,2013(1):109-114.
[3] Heath T, Bizer C. Linked data:Evolving the Web into a global data space[J]. Synthesis Lectures on the Semantic Web Theory & Technology, 2011,1(1):1-136.
[4] Curry E, O'Donnell J, Corry E, et al. Linking building data in the cloud:Integrating cross-domain building data using Linked Data[J]. Advanced Engineering Informatics, 2013, 27(2):206-219.
[5] 邱均平,王菲菲. 基于共现与耦合的馆藏文献资源深度聚合研究探析[J]. 中国图书馆学报,2013(3):25-33.
[6] 丁楠,潘有能. 基于关联数据的图书馆信息聚合研究[J]. 图书与情报,2011(6):50-53.
[7] Begelman G, Keller P, Smadja F. Automated tag clustering:Improving search and exploration in the tag space[C]//Proceedings of the Collaborative Web Tagging Workshop at WWW '06.Edinburgh,2006:15-33.
[8] Adrian B,Sauermann L,Roth-berghofer T.Contag:A semantic tag recommendation system[C]//Proceedings of I-SEMANTIC '07.Graz,2007:297-304.
[9] 张云中,杨萌. Tax-folk混合导航:社会化标注系统资源聚合的新模型[J]. 中国图书馆学报,2014(3):78-89.
[10] 周姗姗. 基于Folksonomy模式的数字资源多维度聚合研究[D].长春:吉林大学,2014.
[11] 伍革新. 基于关联数据的数字图书馆资源聚合与服务研究[D].武汉:华中师范大学,2013.
[12] 孙中秋. 社会化标注系统资源聚合[D].长春:吉林大学,2015.
[13] 许鑫,张悦悦. 非遗数字资源的元数据规范与应用研究[J]. 图书情报工作,2014,58(21):13-20,34.
[14] 仝召娟,许鑫,钱佳轶. 基于关联数据的非遗数字资源聚合研究[J]. 图书情报工作,2014,58(21):21-26.
[15] 夏翠娟,刘炜,赵亮,等. 关联数据发布技术及其实现——以Drupal为例[J]. 中国图书馆学报,2012(1):49-57.
[16] 沈志宏,刘筱敏,郭学兵,等. 关联数据发布流程与关键问题研究——以科技文献、科学数据发布为例[J]. 中国图书馆学报,2013(2):53-62.
[17] 徽州文化网[EB/OL].[2015-03-01]. http://www.hzwh.com/index.asp.
[18] 中国徽州文化博物馆[EB/OL].[2015-03-01].http://www.zghzbwg.com/ index.asp.
[19] 安徽师范大学自建数据库[EB/OL].[2015-03-01].http://lib1.ahnu.edu.cn/4803.
[20] 汉语分词系统[EB/OL].[2015-03-01].http://ictclas.nlpir.org.
[21] Linked Data[EB/OL]. [2015-03-01].http://www.w3.org/DesignIssues/LinkedData.html.
[22] 白海燕. 关联数据及DBpedia实例分析[J]. 现代图书情报技术,2010(3):33-39.
[23] 张冰冰. 基于领域本体的景点影视音乐推荐[D].杭州:浙江大学,2014.

文章导航

/