情报研究

多会话网络购物商品信息搜寻行为研究

  • 刘洪莲 ,
  • 张鹏翼 ,
  • 王军
展开
  • 北京大学信息管理系 北京 100871
刘洪莲(ORCID:0000-0002-4501-1972),硕士研究生;王军(ORCID:0000-0003-2850-0624),教授

收稿日期: 2015-06-02

  修回日期: 2015-06-25

  网络出版日期: 2015-07-20

基金资助

本文系国家自然科学基金项目"面向电子商务生态平衡的目录导购机制研究"(项目编号:71373015)研究成果之一。

Product Information Seeking Behavior of Multi-session Online Shopping Tasks

  • Liu Honglian ,
  • Zhang Pengyi ,
  • Wang Jun
Expand
  • Department of Information Management, Peking University, Beijing 100871

Received date: 2015-06-02

  Revised date: 2015-06-25

  Online published: 2015-07-20

摘要

[目的/意义] 研究用户在多会话网购过程中的信息浏览、检索行为及其行为序列特征,以期更好地理解用户的复杂网购行为,指导购物网站提高服务质量,改善用户体验。[方法/过程] 基于某电商网站1 993名用户的11 514个购物任务的网购访问日志,在识别多会话网购任务的基础上,对用户在经多个会话进行网购过程中的信息搜寻行为进行统计分析,并利用顺序分析和聚类分析方法挖掘其典型的行为模式。[结果/结论] 当会话数量为8个及以下时,用户的浏览和搜索行为呈现出明显的规律性变化,且前4个会话发生时是用户做出购物决策的关键阶段;用户在多会话网购过程中存在6种典型的信息搜寻行为模式,分别有不同的信息搜寻行为特征。理解用户的复杂网购行为,可为电商网站设计导航和推荐策略、制定营销方案提供依据。

本文引用格式

刘洪莲 , 张鹏翼 , 王军 . 多会话网络购物商品信息搜寻行为研究[J]. 图书情报工作, 2015 , 59(14) : 117 -125 . DOI: 10.13266/j.issn.0252-3116.2015.14.017

Abstract

[Purpose/significance] This research aims to explore users' browsing, search and sequence patterns in multi-session online shopping tasks.[Method/process] We examined 1993 users' click-through logs of 11514 shopping tasks, and conducted statistical, sequence and clustering analysis.[Result/conclusion] When there were less than 8 sessions in the shopping process, the users' browsing and searching behavior showed obvious patterns, and the first 4 sessions seemed to be the key stage for users; we found 6 typical kinds of information seeking behavior patterns. Results from this research can help us better understand the complex behavior of online shoppers and can be used in improving navigation design and recommendation strategy of online shopping sites.

参考文献

[1] 艾瑞咨询.2015年中国网络购物用户调研报告完整版[EB/OL].[2015-05-20]. http://report.iresearch.cn/2361.html.
[2] Moe W W, Fader P S. Uncovering patterns in cybershopping[J]. California Management Review, 2001, 43(4):106-117.
[3] Senecal S, Kalczynski P J, Nantel J. Consumers' decision-making process and their online shopping behavior:A clickstream analysis[J]. Journal of Business Research, 2005, 58(11):1599-1608.
[4] Moe W W. Buying, searching, or browsing:Differentiating between online shoppers using in-store navigational clickstream[J]. Journal of Consumer Psychology, 2003, 13(1):29-39.
[5] 徐贇, 张盼, 丁婕. 只逛不买的电子商务用户分析——以淘宝网为例[J]. 信息系统学报, 2012 (2):64-75.
[6] 张文君, 王军, 徐山川. 电商用户需求状态的聚类分析——以淘宝网女装为例[J]. 现代图书情报技术, 2015, 31(3):67-74.
[7] Montgomery A L, Li Shibo, Srinivasan K, et al. Modeling online browsing and path analysis using clickstream data[J]. Marketing Science, 2004, 23(4):579-595.
[8] Lee J, Podlaseck M, Schonberg E, et al. Visualization and analysis of clickstream data of online stores for understanding Web merchandising[A]//Kohavi R, Provost F. Applications of Data Mining to Electronic Commerce. Springer:2001:59-84.
[9] 王蕾. 基于信息需求的消费者网络信息搜寻行为研究[J]. 情报理论与实践, 2013, 36(7):90-93.
[10] Lin Shin-jeng, Belkin N J. Modeling multiple information seeking episodes[C]//Proceedings of the ASIS Annual Meeting. Chicago:ASIS, 2000:133-147.
[11] Vakkari P. A theory of the task-based information retrieval process:A summary and generalisation of a longitudinal study[J]. Journal of Documentation, 2001, 57(1):44-60.
[12] Spink A. Multiple search sessions model of end-user behavior:An exploratory study[J]. Journal of the American Society for Information Science, 1996, 47(8):603-609.
[13] Komlodi A, Soergel D. Attorneys interacting with legal information systems:Tools for mental model building and task integration[C]//Proceedings of the Annual Meeting of American Society for Information Science and Technology. Hoboken:Wiley,2002, 39(1):152-163.
[14] Nicosia F M, Choice B. Toward behavioral-behavioristic models[A]//Davis H L, Silk A J, Cook V J. Behavioral and Management Science in Marketing. New York:Wiley, 1978:12-55.
[15] Engel J F, Blackwell R D, Miniard P W. Consumer behavior[M]. New York:Dryder, 1995.
[16] Häubl G, Trifts V. Consumer decision making in online shopping environments:The effects of interactive decision aids[J]. Marketing Science, 2000, 19(1):4-21.
[17] Chen Su-Jane, Chang T Z. A descriptive model of online shopping process:Some empirical results[J]. International Journal of Service Industry Management, 2003, 14(5):556-569.
[18] 王实, 高文, 李锦涛,等. 路径聚类:在Web站点中的知识发现[J]. 计算机研究与发展, 2001, 38(4):482-486.
[19] 马力,焦李成,刘国营.一种基于路径聚类的Web用户访问模式发现算法[J].计算机科学,2004,31(8):140-141.
[20] 马晓艳, 唐雁. 一种基于用户浏览路径的Web用户聚类方法[J]. 西南师范大学学报(自然科学版), 2009, 34(3):93-97.
[21] 王微微, 夏秀峰, 李晓明. 一种基于用户行为的兴趣度模型[J]. 计算机工程与应用, 2012, 48(8):148-151.
[22] 张波,巫莉莉, 周敏.基于Web使用挖掘的用户行为分析[J]. 计算机科学,2006,33(8):213-214.
[23] Spink A, Ozmutlu H C, Ozmutlu S. Multitasking information seeking and searching processes[J]. Journal of the American Society for Information Science and Technology, 2002, 53(8):639-652.
[24] Mackay B, Watters C. Exploring multi-session Web tasks[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York:ACM, 2008:1187-1196.
[25] Gillenson M L, Sherrell D L. Enticing online consumers:An extended technology acceptance perspective[J]. Information & Management, 2002, 39(8):705-719.
[26] 朱志国. Web用户使用模式与兴趣挖掘方法研究[M]. 北京:北京师范大学出版社, 2012.
[27] 袁兴福, 张鹏翼, 刘洪莲, 等. 基于点击流的电商用户会话建模[J]. 图书情报工作, 2015, 59(1):119-126.
[28] Wang Hongning, Song Yang, Chang Mingwei, et al. Learning to extract cross-session search tasks[C]//Proceedings of the 22nd International Conference on World Wide Web. New York:ACM, 2013:1353-1364.
[29] Microsoft. Microsoft sequence clustering algorithm technical reference [EB/OL].[2015-05-20]. https://msdn.microsoft.com/zh-cn/library/cc645866.aspx.

文章导航

/