知识组织

基于特征本体的微博产品评论情感分析

  • 唐晓波 ,
  • 兰玉婷
展开
  • 武汉大学信息管理学院 武汉 430072
唐晓波(IRCID:0000-0001-5885-4509),教授,博士生导师;兰玉婷(ORCID:0000-0003-3664-9381),硕士研究生,E-mail:453198036@qq.com。

收稿日期: 2016-05-05

  修回日期: 2016-08-02

  网络出版日期: 2016-08-20

基金资助

本文系国家自然科学基金项目“社会化媒体集成检索与语义分析方法研究”(项目编号:71273194)研究成果之一。

Sentiment Analysis of Microblog Product Reviews Based on Feature Ontology

  • Tang Xiaobo ,
  • Lan Yuting
Expand
  • School of Information management, Wuhan University, Wuhan 430072

Received date: 2016-05-05

  Revised date: 2016-08-02

  Online published: 2016-08-20

摘要

[目的/意义] 微博平台产品评论的特征级情感分析问题具有其特殊性,为了对特征分类,解决隐式特征的识别问题,并分析特征情感,提出一种基于特征本体的产品评论情感分析方法。[方法/过程] 该方法利用构建的特征本体对特征词分类,通过计算情感词与特征的搭配权重来识别隐式特征,并构建领域情感词典和微博表情符号词典,计算微博产品评论的特征情感极性和强度。[结果/结论] 构建方法模型,通过采集微博评论数据设计实验,验证了提出方法的有效性。

本文引用格式

唐晓波 , 兰玉婷 . 基于特征本体的微博产品评论情感分析[J]. 图书情报工作, 2016 , 60(16) : 121 -127,136 . DOI: 10.13266/j.issn.0252-3116.2016.16.015

Abstract

[Purpose/significance] Feature-level sentiment analysis on product reviews on the microblog platform has its particularity. To group features into categories, solve the recognition problem of implicit features and analyze features' sentiment, this paper proposes a sentiment analysis method of product reviews based on the feature-ontology. [Method/process] Feature-ontology is applied to grouping features into categories. Implicit features are identified by calculating collocation weights between emotional words and features. Emotion dictionary of a specialized field and microblog emoticon dictionary are constructed to calculate emotional intensity and polarity of features. [Result/conclusion] The methodological model is constructed and its effectiveness is verifies by collecting microblog reviews and designing the experiment.

参考文献

[1] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848.
[2] PANG B,LEE L,VAITHYANATHAN S.Thumbs up:sentiment classification using machine learning techniques[C]//Proceedings of the 2002 conference on empirical methods in natural language processing.Philadelphia:ACL,2002:79-86.
[3] 乌达巴拉,汪增福.一种扩展式CRFS的短语情感倾向性分析方法研究[J].中文信息学报,2015,29(1):155-162.
[4] 陈晓东.基于情感词典的中文微博情感倾向分析研究[D].武汉:华中科技大学,2012.
[5] HU M Q,LIU B.Mining and summarizing customer reviews[C]//Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining.Seattle:ACM,2004:168-177.
[6] POPESCU A,ETZIONI O.Extracting product features and opinions from reviews[C]//Proceedings of the 2005 conference on human language technology and empirical methods in natural language processing.Vancouver:ACL,2005:339-346.
[7] 林钦和.基于情感计算的商品评论分析系统[J].计算机应用与软件,2014,31(12):39-44.
[8] KU,L W,LIANG Y T,CHEN H H.Opinion extraction,summarization and tracking in news and blog corpora[C]//Proceedings of the 2006 AAAI spring symposium-technical report.California:AAAI,2006:100-107.
[9] 史伟,王洪伟,何绍义.基于微博的产品评论挖掘:情感分析的方法[J].情报学报,2014,33(12):1311-1321.
[10] JAKOB N,GUREVYCH I.Extracting opinion targets in a single-and cross-domain setting with Conditional Random Fields[C]//Proceedings of the 2010 conference on empirical methods in natural language processing.Massachusetts:ACL,2010:1035-1045.
[11] SU,F Z,KATJA M.From words to senses:a case study of subjectivity recognition[C]//Proceedings of the Coling 2008-22nd international conference on computational linguistics.Manchester:ACL,2008:825-832.
[12] ZHEN H,CHANG K,KIM J.Implicit feature identification via co-occurrence association rule mining[C]//Proceedings of the 12th international conference on computational linguistics and intelligent text processing.Berlin:Springer-Verlag,2011:393-404.
[13] SUN L,LI S,LI J Y,et al.A novel context-based implicit feature extracting method[C]//Proceedings of the 2014 IEEE international conference on data science and advanced analytics.New York:IEEE,2014:420-424.
[14] XU H,ZHANG F,WANG W.Implicit feature identification in Chinese reviews using explicit topicmining model[J].Knowledge-based systems.2015(76):166-175.
[15] 张莉,许鑫.产品评论中的隐式属性抽取研究[J].现代图书情报技术,2015(12):42-47
[16] Liu B.Sentiment analysis and opinion mining[M].California:Morgan&Claypool Publishers,2012:82.
[17] CARENINI G,RAYMOND N,ED Z.Extracting knowledge from evaluative text[C]//Proceedings of the 3rd international conference on knowledge capture.Edmonton:ACM,2005:11-18.
[18] YU J X,ZHA Z,WANG M,WANG K,et al.Domain-assisted product aspect hierarchy generation:towards hierarchical organization of unstructured consumer reviews[C]//Proceedings of 2011 conference on empirical methods in natural language processing.Edinburgh:ACL,2011:140-150.
[19] Gruber T R.A translation approach to portable ontology specifications[J].Knowledge acquisition.1993,5(2):199-220.
[20] 张文秀,朱庆华.领域本体的构建方法研究[J].图书与情报,2011,(1):16-19.
[21] 尹裴.中文产品评论的"特征观点对"识别:基于领域本体的建模方法[J].系统工程,2013,31(1):68-77.
[22] 杜嘉忠.网络商品评论的特征-情感词本体构建与情感分析方法研究[J].现代图书情报与技术,2014(5):74-82.
[23] 鲍佳娜.基于汽车领域的中文微博意见挖掘研究[D].上海:上海交通大学,2014:49-52.

文章导航

/