收稿日期: 2016-05-19
修回日期: 2016-11-25
网络出版日期: 2017-01-05
基金资助
本文系国家社会科学基金项目“基于超网络分析的微博舆情主题发现研究”(项目编号:15CTQ030)和中国农业科学院科技创新工程“农业知识组织与知识挖掘团队项目”研究成果之一。
Interdisciplinary Topic Detection Method and Empirical Research Based on Topic Correlation Analysis: A Case Study of Animal Resource and Breeding
Received date: 2016-05-19
Revised date: 2016-11-25
Online published: 2017-01-05
[目的/意义] 针对单学科和双学科主题发现方法无法挖掘现有交叉文献中主题演化来源的问题,提出面向跨学科的主题发现方法,为跨学科发展和合作提供依据。[方法/过程] 首先在动物资源与育种领域期刊文献数据中选取已经出现交叉现象的两个基础学科文献及其交叉文献,使用改进的主题相关分析方法,提取共同主题和各自的独立主题;然后利用相关性测度方法量化不同学科独立主题的相关性;最后对共同主题和相似性较高的独立主题进行具体分析。[结果/结论] 在动物资源与育种领域的农学生殖生物学、兽医学以及其交叉文献上进行实验验证,结果表明所提出的方法能够有效发现交叉主题的学科出处。
吴蕾 , 田儒雅 , 张学福 . 基于主题相关分析的跨学科主题发现方法及实证研究——以动物资源与育种领域为例[J]. 图书情报工作, 2017 , 61(1) : 72 -79 . DOI: 10.13266/j.issn.0252-3116.2017.01.009
[Purpose/significance] This paper aims at the problems of the single and double disciplines topic detection which cannot show the source of topics, proposes a multi-disciplinary topic detection method, and provides the basis for the development and cooperation of the interdisciplinary.[Method/process] Firstly, this paper extracts the shared topics and the domain-specific topics from two heterogeneous disciplines and their interdisciplinary using the topic correlation analysis method. Secondly, it quantifies the correlation of domain-specific topics using the correlation measures. Finally, the paper analyzes shared topics and similar domain-specific topics.[Result/conclusion] The experimental results on the agriculture and reproductive biology, the veterinary and the interdisciplinary in the field of the animal resource and breeding show the proposed method effectively detects the source of topics.
[1] KLEIN J T. The discourse of interdiciplinarity:perspectives from the "handbook of the undergraduate curriculum."[J]. Liberal education, 1998, 84(3):4-11.
[2] 王平. 基于层次概率主题模型的科技文献主题发现及演化[J]. 图书情报工作, 2014, 58(22):70-77.
[3] KOLLAR D, FRIEDMAN N. Probabilistic graphical models principles and techniques[M]. Cambridge:The MIT Press, 2009:713-715.
[4] LI L, JIN X, LONG M. Topic correlation analysis for cross-domain text classification[C]//AAAI Conference on Artificial Intelligence. Toronto:AAAI, 2012.
[5] POTAPENKO A, VORONTSOV K. Robust PLSA performs better than LDA[M]//Advances in information retrieval. Berlin:Springer, 2013:784-787.
[6] 杨良斌, 金碧辉. 跨学科研究中学科交叉度的定量分析探讨[J]. 情报杂志, 2009, 28(4):39-43.
[7] MORILLO F, BORDONS M, GOMEZ I. An approach to interdisciplinarity through bibliometric indicators[J]. Scientometrics, 2001, 51(1):203-222.
[8] SANZ-MENENDEZ L, BORDONS M, ZULUETA M A. Interdisciplinarity as a multidimensional concept:its measure in three different research areas[J]. Research evaluation, 2001, 10(1):47-58.
[9] SCHUMMER J. Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology[J]. Scientometrics, 2004, 59(3):425-465.
[10] 谭焱桐,邓小昭. 跨学科信息查寻行为研究文献综述[J]. 图书情报工作, 2015, 59(16):135-142.
[11] 闵超, 孙建军. 学科交叉研究热点聚类分析[J]. 图书情报工作, 2014, 58(1):109-116.
[12] 杨良斌. 跨学科指标测度的数据集构建及数据预处理研究[J]. 图书情报工作, 2013, 57(11):90-95.
[13] JONES P C, MERRITT J Q. Critical thinking and interdisciplinarity in environmental higher education:the case for epistemological and values awareness[J]. Journal of geography in higher education, 1999, 23(3):349-357.
[14] 赵琦, 张智雄, 孙坦, 等. 主题发现技术方法研究[J]. 情报理论与实践, 2009 (4):104-108.
[15] 范云满,马建霞.基于LDA与新兴主题特征分析的新兴主题探测研究[J].情报学报,2014,33(7):698-711.
[16] 黄鲁成,唐月强,吴菲菲,等.基于文献多属性测度的新兴主题识别方法研究[J].科学学与科学技术管理,2015(2):34-43.
[17] 唐晓波,房小可. 基于文本聚类与LDA相融合的微博主题检索模型研究[J]. 情报理论与实践, 2013 36(8):85-90.
[18] 郭卫宁, 司莉. 国内非相关文献知识发现研究综述[J]. 图书情报知识, 2013(6):97-105.
[19] ZHANG Y, HU X, LI P, et al. Cross-domain sentiment classification-feature divergence, polarity divergence or both?[J]. Pattern recognition letters, 2015, 65(C):44-50.
[20] MOREO F A, ESULI A, SEBASTIANI F. Distributional correspondence indexing for cross-lingual and cross-domain sentiment classification[J]. Journal of artificial intelligence research, 2016(55):131-163.
[21] MANNING C D, SCHUTZE H. Foundations of statistical natural language processing[M]. Cambridge:MIT Press, 1999.
[22] FUGLEDE B, TOPSOE F. Jensen-Shannon divergence and Hilbert space embedding[C]//IEEE international symposium on information theory, Washington:IEEE,2004:31-31.
[23] BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]//Noise reduction in speech processing, Berlin:Springer, 2009:1-4.
[24] JOPKE C, KREYLING J, MAES J, et al. Interactions among ecosystem services across Europe:Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns[J]. Ecological indicators, 2015, 49(49):46-52.
[25] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The annals of mathematical statistics, 1951, 22(1):79-86.
[26] BAEZ J C, FRITZ T. A Bayesian characterization of relative entropy[J]. Theory and applications of categories, 2014, 29(16):422-456.
[27] BARTOL T, BUDIMIR G, JUZNIC P, et al. Mapping and classification of agriculture in Web of Science:other subject categories and research fields may benefit[J]. Scientometrics, 2016, 109(2):979-996.
[28] 薛晓丽, 武夷山. 跨学科研究的文献计量及可视化分析[J]. 情报杂志, 2014, 33(7):122-127.
[29] 刘琳. 畜牧学与兽医学学科发展报告[J]. 中国家禽, 2008, 30(19):32-38.
[30] 钟崇高.农学初步[M]//简明自然科学向导丛书.济南:山东科学技术出版社, 2013.
[31] 窦肇华.农学生殖生物学[M].北京:人民卫生出版社,2007.
[32] 田艳艳, 霍然, 王红梅, 等. 农学生殖生物学研究的发展及前沿[J]. 科学通报, 2015 (24):2282-2287.
[33] 高作信.兽医学[M].3版.北京:中国农业出版社,2010.
/
〈 |
|
〉 |