收稿日期: 2016-09-09
修回日期: 2016-12-21
网络出版日期: 2017-01-05
基金资助
本文系中国科学院知识产权信息服务专项(项目编号:KFJ-EW-STS-032)和中国科学院西部之光项目“基于本体的专利文献技术挖掘系统研究与实践”研究成果之一。
Design and Practice of Domain Patent Tech Mining System Oriented to TRIZ
Received date: 2016-09-09
Revised date: 2016-12-21
Online published: 2017-01-05
[目的/意义] 针对面向TRIZ的专利技术深度、精准挖掘的需求,设计并开发一套领域专利技术挖掘系统。[方法/过程] 首先,归纳面向TRIZ的专利技术挖掘的具体需求,分析现有工具的不足。其次,提出领域专利技术挖掘系统的体系结构,总结其关键技术及解决方案。最后,开发一套面向TRIZ的领域专利技术挖掘原型系统,并进行大口径光学元件(LAOE)领域专利技术挖掘实践。[结果/结论] 该系统基于SAO(subject-action-object)三元组与简单知识对象,集成文本挖掘技术构建细粒度、多维度的领域技术索引,实现领域知识棱镜、面向TRIZ的语义检索与专利可视化分析功能,可以支持深度、精准的专利技术挖掘应用。
胡正银 , 刘春江 , 隗玲 , 杨宁 , 徐源 , 许海云 , 文奕 . 面向TRIZ的领域专利技术挖掘系统设计与实践[J]. 图书情报工作, 2017 , 61(1) : 117 -124 . DOI: 10.13266/j.issn.0252-3116.2017.01.014
[Purpose/significance] According to the requirements of deep and precise patent tech mining, this paper designed and developed a domain patent tech mining system oriented to TRIZ.[Method/process] This paper induced the requirements of patent tech mining oriented to TRIZ, analysed the disadvantages of exists tools, proposed a framework of domain patent tech mining system, and summarized key technologies and corresponding solutions. Based on these, a prototype of a domain patent tech mining system was developed.[Result/conclusion] The system considers SAO triples and simple knowledge objects as basic semantic units and includes a fine-grained, multi-dimensional domain tech index, which offers three services, semantic search service oriented to TRIZ, domain knowledge lens, and visualization analysis service, to support deep and precise patent tech mining.
Key words: tech mining; Subject-Action-Object; semantic TRIZ; knowledge lens; patent analysis
[1] 唐炜, 刘细文.专利分析法及其在企业竞争对手分析中的应用[J]. 现代情报, 2005(9):179-183, 186.
[2] 王朝晖. 专利文献的特点及其利用[J]. 现代情报, 2008,(9):151-152,156.
[3] PORTER A L, CUNNINGGHAM S W. Tech mining:exploiting new technologies for competitive advantage[M]. Hoboken:John Wiley & Sons, Inc., 2004.
[4] PORTER A L. How tech mining can enhance R&D management[EB/OL].[2016-08-18].http://www.thevantagepoint.com/resources/articles/How%20Tech%20Mining%20can%20Enhance%20R_D%20Mgmt.pdf.
[5] 胡正银.基于个性化语义TRIZ的专利技术挖掘研究[D].北京:中国科学院大学, 2015.
[6] ALTSHULLER G S, SHULYAK L, STEVEN R. The innovation algorithm:TRIZ, systematic innovation and technical creativity[M]. Worcester:Thecnicall Innovation Center, Inc, 1999.
[7] LOH H T, HE C, SHEN L X. Automatic classification of patent documents for TRIZ users[J]. World patent information, 2006, 28(1):6-13.
[8] SEARCH TECHNOLOGY INC.VantagePoint[EB/OL].[2016-07-03]. https://www.thevantagepoint.com/products/4-products/vantagepoint.html.
[9] THOMSON REUTERS.Thomson innovation[EB/OL].[2016-07-13]. http://www.thomsoninnovate.org/zh/features/analyze.
[10] HIS INC.Goldfire:advanced research, problem solving & analytics[EB/OL].[2016-07-13]. https://www.ihs.com/products/design-standards-software-goldfire.html.
[11] EPO. Global Patent Index user manual[EB/OL].[2016-07-11]. http://documents.epo.org/projects/babylon/eponet.nsf/0/16B7F77528515906C1257C04003AB2FA/$File/gpi_user_manual_v2.5_en.pdf.
[12] 王小梅.专利分析工具介绍[EB/OL].[2016-07-12]. http://ir.las.ac.cn/handle/12502/4357.
[13] 刘春江, 刘丹军, 文奕. 基于Solr的专利在线分析系统的设计与实现[J]. 现代图书情报技术, 2013(2):88-92.
[14] 王敏, 李海存, 许培扬. 国外专利文本挖掘可视化工具研究[J]. 图书情报工作, 2009,53(24):86-90.
[15] ZHANG Y, PORTER A L,HU Z Y,et al. "Term clumping" for technical intelligence:a case study on dye-sensitized solar cells[J]. Technological forecasting and social change,2014,85(6):26-39.
[16] MIKHAIL V. Semantic TRIZ[EB/OL].[2015-07-06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.1907&rep=rep1&type=pdf.
[17] 李颖, 赵蕴华, 霍翠婷, 等.日本专利检索体系中主题分类"FI/F-term"的理论与应用研究[J]. 数字图书馆论坛, 2008 (11):42-44, 47.
[18] BONINO D, CIARAMELL A, CORNO F. Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatrics[J]. World patent information, 2010,32(1):30-38.
[19] 胡正银,方曙,张娴,等. 个性化语义TRIZ构建研究[J]. 图书情报工作,2015,59(7):123-131.
[20] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[21] FADER A, SODERLAND S, ETZIONI O. Identifying relations for open information extraction[EB/OL].[2016-03-02].http://ai.cs.washington.edu/www/media/papers/reverb.pdf.
[22] 刘毅,汤怡洁,周子健,等. 科技知识组织体系共享服务平台服务接口建设研究[J]. 现代图书情报技术,2014,30(S1):9-16.
[23] 颜伟, 荀恩东. 基于WordNet的英语词语相似度计算[C]//全国学生计算语言学研讨会论文集.北京:中国中文信息学会,2004.
[24] BOYAK K. Methods, metrics, and missions that matter[C]//The 4th annual global techmining conference.Neitherland(Leiden):VP Institute, 2014.
/
〈 |
|
〉 |