[目的/意义] 构建基于关联数据的探索式检索系统,充分利用关联数据中隐藏的知识网络,向用户提供发现新知识的机会。[方法/过程] 基于DBpedia电影数据集,采用改进的向量空间模型进行关联数据的语义相似度计算,使用可视化的交互技术对检索结果进行呈现。[结果/结论] 通过基于任务的评价方法与IMDB进行对比,证明基于关联数据的探索式检索系统能够提高检索效率,提升用户体验并能引导用户发现其感兴趣的信息。
[Purpose/significance] Building a LOD-baesd exploratory search system can make full use of the hidden knowledge behind the linked data, and then can provide users with new opportunities to discover new knowledge. [Method/process] Based on DBpedia movie dataset, we use improved Vector Space Model to calculate the semantic similarity and use visual interaction to show the search results. [Result/conclusion] By task-based evalution, comparing with IMDB, we prove that LOD-based exploratory search system can improve the efficiency of search and improve the user experience of search and also can guide the users to find the information they are interested in.
[1] MARCHIONINI G. Exploratory search:from finding to understanding[J]. Communications of the ACM, 2006, 49(4):41-46.
[2] THAKKER D, DIMITROVA V, LAU L, et al. Making sense of linked data:a semantic exploration approach[M]//Mastering data-intensive collaboration and decision making. Cham:Springer International Publishing, 2014:71-87.
[3] RITZE D, ECKERT K. Data enrichment in discovery systems using linked data[M]//Data analysis, machine learning and knowledge discovery. Cham:Springer International Publishing, 2014:455-462.
[4] NUZZOLESE A G, PRESUTTI V, GANGEMI A, et al. Aemoo:linked data exploration based on knowledge patterns[J]. Semantic Web, 2017, 8(1):87-112.
[5] WAITELONIS J, SACK H. Towards exploratory video search using linked data[J]. Multimedia tools and applications, 2012, 59(2):645-672.
[6] DI NOIA T, MIRIZZI R, OSTUNI V C, et al. Linked open data to support content-based recommender systems[C]//Proceedings of the 8th international conference on semantic systems. New York:ACM, 2012:1-8.
[7] TOUS R, DELGADO J. A vector space model for semantic similarity calculation and OWL ontology alignment[C]//International conference on database and expert systems applications. Berlin:Springer Berlin Heidelberg, 2006:307-316.
[8] QUILLAN M R. Semantic memory[R].Cambridge:Bolt Beranekand Newman Inc., 1966.
[9] PASSANT A. Measuring semantic distance on linking data and using it for resources recommendations[C]//AAAI Spring Symposium:linked data meets artificial intelligence. Palo Alto:AAAI Press, 2010:77-123.
[10] DAMLJANOVIC D, STANKOVIC M, LAUBLET P. Linked data-based concept recommendation:comparison of different methods in open innovation scenario[C]//Extended Semantic Web Conference:The Semantic Web:research and applications. Berlin:Springer Berlin Heidelberg, 2012:24-38.
[11] AUGENSTEIN I, GENTILE A L, NORTON B, et al. Mapping keywords to linked data resources for automatic query expansion[M]//The Semantic Web:ESWC 2013 Satellite Events.Berlin:Springer Berlin Heidelberg, 2013:101-112.
[12] HULPUS I, PRANGNAWARAT N, HAYES C. Path-based semantic relatedness on linked data and its use to word and entity disambiguation[M]//The Semantic Web-ISWC 2015. Cham:Springer International Publishing, 2015:442-457.
[13] Linked Data, RDF, and SPARQL Part 1[EB/OL].[2017-02-20].http://www.oraclealchemist.com/news/linked-data-rdf-and-sparql-part-1.