[目的/意义] 在专利分析中引入Knowledge Graph,将专利内容转换为由Knowledge Graph中实体语义关系所构成的图结构,进而探索该形式的专利表示方法在识别专利诉讼案中专利证据的可行性。[方法/过程] 在专利内容转换过程中,首先采用自动术语识别方法提取其实体指称,并通过实体链接将实体指称转化为命名实体,进而根据图算法识别出该专利的隐含实体,最终形成该专利所对应的图结构。[结果/结论] 将该专利表示方式应用于硬盘驱动器领域来寻找专利诉讼案中可用的证据专利,实证结果表明,与当前主流的专利文本表示方式相比,该方法在寻找证据专利效果上有较大提升。
[Purpose/significance]This paper introduces knowledge graph to patent analysis, and it transforms patent content from unstructured text to graph structure with node as entity and edge as semantic relationship. Furthermore, the feasibility of patent evidence recognition is explored.[Method/process]During transformation of patent content, we use ATE (Automatic Terminology Extraction) method to find entity mentions from patent text, and change them into entity via entity linking based on knowledge graph.Then we use the proposed graph algorithm to recognize hidden entities in patent, and finally output the patent's graph structure.[Result/conclusion] We apply this presentation to hard disk drive to find potential patent evidence,and empirical result shows that the proposed presentation method of patent content can outperform current mainstream method to a large extent.
[1] 吕祥惠,仇宝艳,乔鸿.基于本体的专利知识发现体系研究[J].计算机与信息术,2008(7):43-46.
[2] 刘知远,崔安颀,赵鑫,等.大数据智能:互联网时代的机器学习和自然语言处理技术[M].北京:电子工业出版社,2016.
[3] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600.
[4] 徐增林,盛泳潘,贺丽荣,等.知识图谱技术综述[J].电子科技大学学报,2016,45(4):589-606.
[5] 金贵阳,吕福在,项占琴.基于知识图谱和语义网技术的企业信息集成方法[J].东南大学学报(自然科学版),2014,44(2):250-255.
[6] 秦长江,侯汉清.知识图谱——信息管理与知识管理的新领域[J].大学图书馆学报,2009,27(1):30-37.
[7] YOON J,KIM K.Trendperceptor:a property-function based technology intelligence system for identifying technology trends from patents[J].Expert system with application,2012,39(3):2927-2938.
[8] ZHANG Y, PORTER L A, HU Z Y, et al. "Term clumping" for technical intelligence:a case study on dye-sensitized solar cells[J]. Technological forecasting and social change,2014,85:26-39.
[9] YOON J, KON, KIM J. A function-based knowledge base for technology intelligence[J].Industrial engineering&management systems,2015, 14(1):73-87.
[10] ChOI S, PARk H, KANG D, et al. An SAO-based text mining approach to building a technology tree for technology planning[J].Expert system with application, 2012, 39(13):11443-11455.
[11] PARK H. Identifying patent infringement using SAO based semantic technological similarities[J]. Scientometrics, 2012, 90(2):515-529.
[12] DEWULF S. Directed variation of properties for new or improved function product DNA, a base for connect and develop[J].Procedia engineering,2011(9):646-652.
[13] YOON J, KIM K. An analysis of property-function based patent networks for strategic R&D planning in fast-moving industries:The case of silicon-based thin film solar cells[J]. Expert systems with applications, 2012, 39(9):7709-7717.
[14] 胡正银, 方曙. 专利文本技术挖掘研究进展综述[J]. 现代图书情报技术, 2014, 30(6):62-70.
[15] PARK H, YOON J, KIM K. Using function-based patent analysis to identify potential application areas of technology for technology transfer[J]. Expert systems with applications, 2013, 40(13):5260-5265.
[16] CHOI S, KIM H, YOON J, et al. An SAO-based text-mining approach for technology roadmapping using patent information[J].R&D management, 2013,43(1):52-73.
[17] GUO J, WANG X, LI Q, et al. Subject-action-object-based morphology analysis for determining the direction of technological change[J]. Technological forecasting &social change, 2016, 105(4):27-40.
[18] YANG S Y, SOO V W. Extract conceptual graphs from plain texts in patent claims[J]. Engineering applications of artificial intelligence, 2012, 25(4):874-887.
[19] ChOI S, KANG D, LIM J, et al. A fact-oriented ontological approach to SAO-based function modeling of patents for implementing function-based technology database[J]. Expert system with application, 2012, 39(10):9129-9140.
[20] 陆伟, 武川. 实体链接研究综述[J]. 情报学报, 2015,34(1):105-112.
[21] FRANTZIK,SOPHIA A,HIDEKIM.Automatic recognition of multi-word terms:the C-value/NC-value method[J].International journal on digital libraries,2000,3(2):115-130.
[22] 张杰,孙宁宁,张海超,等.基于SAO结构的中文相似专利识别算法及其应用[J]. 情报学报, 2016, 35(5):472-482.
[23] 陈亮,张志强,尚玮姣.基于闭频繁项集挖掘的技术演化研究方法[J].图书情报工作,2013, 57(19):107-111.
[24] 陈亮,张静,杨冠灿,等.基于专利文本的闭频繁项集在技术演化分析中的应用[J].图书情报工作, 2016,60(6):70-76.
[25] 陈亮.基于关联规则改进的技术演化分析方法研究[D].北京:中国科学院大学,2013.
[26] GAO X,XIAO B,TAO D,et al.A survey of graph edit distance[J]. Pattern analysis and applications, 2010, 13(1):113-129.